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Motivation

e LHC equipment failure: resulting beam losses potentially dangerous to the
ATLAS Inner Detector (ID)

e Experience show that beam accidents can happen

Secondary collimator (stainless steel)
for hglesremoval . <
Tevatron Beam accident: - 4 PR

caused by Roman Pot reinserting
itself in the beam after it had been
issued the retract commands

20-30 Tevatron turns

e Total energy stored in one LHC beam (2808 bunches with 10! protons at
7TeV = 350MJ) more than 100-times higher than in previous accelerators
like Tevatron or HERA

e Time constants of magnets: shortest ~ few LHC turns (order of ms) — if
beam losses detected early enough, the beam can be dumped in time to
prevent beam accident (beam is dumped within 3 turns ~ 270us)



ATALS BCM and BLM goal

Protection

e Passive:

e ATLAS and CMS have TAS collimators: protects Inner Detector from direct beam incidences
e TAS (Target Absorber Secondaries) collimators: at z==*18m which protect the Inner Triplet of
quadrupoles from secondaries produced in p-p collisions

e Active:
Machine Beam Loss Monitors, Beam Positions Monitors... can fire beam abort

e ATLAS Beam Condition Monitor (BCM) and Beam Loss Monitor (BLM)
* Designed for fast detection of early signs of beam instabilities (due to incorrect
magnet settings, magnet trips, failures...)
e [ssue a beam abort in case of beam failures

e BCM

e Particle counter

e Will additionally provide a coarse relative luminosity measurement (complementary
information to LUCID-ATLAS main luminosity monitor)

e BLM

e Induced current measurement



ATLAS BCM: principle of operation

Time of flight measurement to distinguish between collisions and

background events (beam gas, halo, TAS scraping)
* measurement every proton bunch crossing (BC - 25 ns)
e place 2 detector stations at z=+1.9m:
e particles from collisions reach both stations at the same time (6.25ns after collisions
themselves) every BC
e particles from background interactions
e reach the nearest station 12.5ns (%2 BC) before particles from collisions (6.25ns before
collisions themselves)
e reach the furthest station at the same time as particles from collisions
> use “out of time” hits to identify the background events
> use “in time” hits to monitor luminosity

Collision event

Requirements:
® fast and radiation hard

’T detector & electronics:

S >rise time ~1ns

‘ >pulse width ~3ns

>baseline restoration ~10ns
] >jionization dose ~0.5 MGy,

|

10'°particles/cm? in 10
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BCM: Realization

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

e 4 BCM detector modules on each side of the
Interaction Point

®* Mounted at z=+183.8cm and ¢=0°, 90°,
Vil 180°, 270°, sensors at r=5.5cm (n~4.2)
® Modules tilted by 45° towards the beam pipe

TRT

ATLAS

Toroid Magnets  Solenoig

SCT

BCM detector
modules



BCM: Detector Modules Installed

BCM modules were installed on Beam Pipe Support Structure (BPSS)
in November 2006 and lowered into ATLAS pit in June 2007
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BCM Detector modules

Poly-crystalline CVD diamond sensors
e developed by RD42 and Element Six Ltd.
e radiation hard: shown to withstand 10*°p/cm?

e low leakage current — no cooling required
e operated at high drift field 2V/pum — fast and short signals

Double - decker assembly
e 2 back-to-back sensors each with
* Thickness 500m, o signal
CCD @1V/cm ~220pum "N
Size: 10X 10 mm?

Contact size: 8 X8 mm?
Operated at 2V/pm (1000V) line

redundant

@
_}
ceramic
baseboard

e Double signal compared to assembly with *"“"**

one sensor, but noise not measured to be
two times higher

* For 45° particle incidence signal increase

by factor V2 — modules installed at 45°
to the beam pipe

inserts
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BCM Detector modules

Front end electronics
e 2 stage amplifier:
e 1% stage: Agilent MGA-62653, 500MHz (22db)
e 2% stage: Mini Circuit GALI-52, 1GHz (20dB)/

e Measurements showed (confirmed with simulation):
e Limiting BWL to 200MHz improved S/N by 1.3
e rise time worse by 70% and FWHM by 60%, but still fit
to requirements
e — 4™ order 200MHz filter integrated on digitisation
board before digitisation (NINO chip)
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BCM: Readout chain

e Analogue signals from BCM detector modules routed behind calorimeter
(lower radiation levels) where they are “digitised” by custom made board

based on NINO chip
e Each module connected to separate NINO electronics board

I-------I -----------I .

~ Counting room
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BCM: “Digitisation” electronics board

NINO chip

e Developed for ALICE ToF (F. Anghinolfi et al.)
e Radiation tolerant, fabricated in 0.251um IBM process
e Rise time < 1ns, jitter <25ps, Min. detection threshold 10fC

e Time-over-threshold amplifier-discriminator (adjustable threshold) chip

e Width of LVDS output signal depends on input charge

e Before input to NINO chip: signal charge split in two channels in ratio of 1:11 to
increase the dynamic range — high and low gain channels

e Low gain channels need ~10 times more MIPs traversing the sensor simultaneously
than high gain channels to show the signal
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BCM: Readout chain

e Optical signals transmitted through 70m of optical fibres to USA15 counting room
e Optical signals transformed to PECL (2 optical receiver boards) and connected to 2
data processing units based on Xilinx Vitrex-4 FPGA

® Processing units connected to
e ATLAS Central Trigger Processor (CTP): BCM provides 9 bits
e ATLAS Data acquisition (TDAQ): on trigger signal (LVL1A) from CTP, BCM data from 31 bunch
crossings is formatted and sent of ATLAS DAQ readout chain
® ATLAS Detector Control System (DCS): monitoring rates,...
e Detector Safety Systems (DSS), Beam abort system (through CIBU-Control Interlocks Beam User)

I-------I l------------l .
: BPSS : : PP2 (N 1OGY) : Countlng PGA Board ATLAS CTP
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]
| "‘"{“\ I Cogx TDAQ ROS
1 . [ ] B R
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1 I I [ | " e | S-link Data Out ATLAS
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mEmEm—————— . Temperature Recorded Data and DSS(4) "
e e m—m—————— )
8x
High Voltage, Low Voltage, Temperature
12




ATLAS BCM: Cosmic data

November 2008: combined ATLAS Inner Detector cosmic data taking

e Two different triggers:
e Resistive Plate Chambers (RPC) of Muon system
e Fast-OR mechanism of Transition Radiation Tracker (TRT)

e On each trigger from CTP: BCM sends data (signal rising edge and width) from 31 BCs to
ATLAS DAQ chain

e Timing distribution of RPC and TRT triggered BCM hits:

e Superimposed is a fit to Gaussian signal and a random background.
e Gaussian peak wider with RPC trigger: better jitter of TRT trigger

* Probability for noise hit in BC: ~1077
e RPC: about 10M triggers needed for 9 true BCM hit
e TRT: about 1M triggers needed for 9 true BCM hit
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ATLAS BCM: Cosmic data

June 2009: ATLAS cosmic data taking

e IDCosmic trigger stream: selects events with at least 1 track reconstructed in Inner Detector
at trigger LVL2

e RNDM trigger stream: random trigger

e Timing plots:
e RNDM stream: flat as expected
e IDCosmic stream: Gaussian width ~ as for TRT stream in November cosmic run

e Probability for noise hit per 1 BC: 8-7 times higher then in November 2008 run, due to
higher thresholds in 2008

e Signal: 1M IDCosmic triggers give 6 true BCM hits
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ATLAS BCM: Cosmic data

Timing distribution of BCM hits over channels:

e Almost no hits on C side (attributed to unequal
size of 2 main ATLAS shafts)

Channel
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ATLAS BLM

ATLAS Beam Loss Monitor — ATLAS BLM

e Independent system

e Recently added as a backup for ATLAS BCM

e Goal: only protection = much simpler than BCM

e Provide complementary information to BCM, but can be used as standalone in
case of problems with BCM

e Readout electronics based on the LHC BLM system

e Major change: ATLAS BLM uses diamond sensors instead of ionisation chambers (LHC
BLM)

e Other: different LV powering scheme, firmware changes in the readout cards,...

e Sensors:

* one pCVD 8 x8mm? diamond, 500pum

thick. metallization 7 X 7mm?

e operated at +500V
e current @500V typically <1-2pA

16



ATLAS BLM: Detector modules

12 detector modules installed in May 2008

SIDEA\\ view towards |P
AN

e 6 on each side of IP, installed on Inner
Detector End Plate
e Close to IP: 2=+3450mm, r=65mm

BLM Cowjtesy of
modules T. Kittelmann 17



ATLAS BLM: Readout

e Measurement of radiation induced current in sensors, integrated over
predefined time constants ranging from 40us to 84s.

e Digitization of induced current: converted to frequency by radiation tolerant
BLMCFC (“CFC card”, behind calorimeter)

e Digitised information transmitted through optical fibers to USA15 counting

room, recorded by BLMTC (“threshold card”) based on Altera FPGA:

e BLMTC inserted in VME crate

e Through Single Board Computer, VME bus used recording the post mortem buffer
and for monitoring readings (sent to ATLAS Detector Control System)

e Connected to LCH beam abort: beam abort issued if readings from 2 modules on
one side exceed a predefine threshold
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Summary

e ATLLAS BCM will monitor beam conditions

close to IP using TOF measurement
* Goal:

e Protection |

e Additionally, relative luminosity measurement
e pCVD diamonds as sensor material

e 2 diamonds in a back-to-back configuration

at 45° towards the beam
e First experience with the system obtained
in the last year and a half

e ATLAS BLM:

e Redundant system for safety purposes
e Induced current measurement
e pCVD diamond sensors

* Looking forward to using them in the real LHC environment

19



Backup slides
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Beam Loss Scenarios

e Single-turn losses
e Likely to occur during injection or beam dump processes
e ATLAS can be rated the 'safest' of all LHC interaction points (far away from injection, dump)

* Pilot bunch (single bunch of low intensity, 5% 10°p@450GeV; 360J) will be used to check the
magnet settings

0.15

Simulation of beam orbits with wrong 0.10-
magnet settings (D. Bocian) exhibit scenarios

TAS
SV.L

with pilot beam scrapping the beam pipe or ‘\""’5 1— %JJ_ —] g
TAS collimator (most likely scenario), no direct & | 1 o
hitting of Inner Detector (ID) > — — ! ®
-0.05 4 I | .

TAS (Target Absorber Secondaries) I 2 = =

. . -0.10 - [ Q wn
collimators: at z=+18m which protect _ = n B
the Inner Triplet of quadrupoles from o154 - . . :

. . s o -30 -24 18 12 -6 n 6 12 18 24 30

secondaries produced in p-p collisions < 60 m >

e Multi-turn losses
e Beam degradation due to equipment failure, magnet trips, wrong magnet settings...
e Time constants of magnets: shortest ~ few LHC turns (order of ms) — can abort the beam if

detected early (beam is dumped within 3 turns ~ 270us) 21



QA of BCM Modules

Qualification tests with final modules to select 8 for installation
 Raw sensor characterization:

* 1/V, CCD
* Module performance

* All modules subjected to thermo-mechanical test

° infant mortality test (12h @80°)

* accelerated ageing for one of the module Sr source

(14h @120° 10 years at 20°) BCM module — eollimator
* thermal cycling (10 cycles from -25° to 45°)
yclng Y I PMT i scintillator
* Module performance checked before and after v (trigg.)
these tests with 2°Sr setup G = 0.3295% 0.0002mV  MPV = 2.703+ 0.003 mV
. Noise distribution MIP signal distribution
* no change in S/N observed L N N 7
 for normal particle incidence: typical S/N~7-7.5 0.035F \/\ """""
0.03; I \ /
25F &\
MODULE || 404 | 405 | 408 | 410 | 413 [ 420 [ 422 [ 424 | | [ Ja
Polarity + + - + + - - - voisk I . Iyy N
MPV [mV] || 24 [ 23 [ 23|27 [ 22 | 27 [ 24 | 27| L.k Pk \
S/N 66 | 69 | 7.0 | 7.8 | 70 | 7.9 | 74 | 82 | ,uf LN/
Current [nA] || 70 | 35 | 20 | 25 | 250 | 200 | 40 | 10 | fiidii NobioonS .
-3 -2 -1 0 1 2 3 4 6 mV7




BCM Detector modules

Front end electronics
e 2 stage amplifier:

e 1% stage: Agilent MGA-62653, 500MHz (22db) —
e 2% stage: Mini Circuit GALI-52, 1GHz (20dB)
e Limiting BWL to 200MHz improved S/N by 1.3 (and rise time worse by
70% and FWHM by 60%, but still fit to requirements)
— 4™ order 200MHz filter integrated before digitization (on NINO board)
; E : ] ] =
100 |, 200mrs BWEL o  1GHz BWL X
800 160- i i N
: N ! \ [F :Bh\ Amplitude dist. : R/V ) S
Lab. Tests with 4, | ipitu N =
o - ! \4/%/ Noise dist. ; ﬁ N\ LA
incidence ik } | ] Lk i E%Q %5&’@ ]
f N/ 2o R wm
L : i :4 ? —— .Iﬁj.w g W 0\\;\;\\ L L — /ﬁj;/]
Off-line analysis of waveforms |
recorded at full BWL: w08 e “f#\’\"
optimum S/N with 1° order oonz - ' Ly
filter with cut-off frequency o 001 - ? =
23

200-400 MHg % 200 200 s0o ooD 1000 "o 200 &00 600 0D 1000 U0 200 400 e0e oo 1000 °
viMHz) viMHz) v(MHz)



BCM: Analogue signals

Signals recorded with 200MHz BWL at the readout
* Typical S/N with MIP at 90° incidence in the lab. tests: 7-7.5

® Most probable amplitude produced by MIP at 90°in the lab tests: 2.2 - 2.7mV

e Mean rise time 1.4ns

* Mean FWHM 2.9ns
e Timing resolution better than 400ps (thresholds: 0.1-2 MP amplitude)
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T T T

signal [mV]
signal [mV]

.. 200MHz BWL.....  IGHsBWL |

N}
T T
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- i i | : : : : : : : : . [ | | L 111 | L1111 | L 111 11
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BCM: luminosity

e BCM will contribute to luminosity monitoring with
* Monitor instantaneous luminosity ! e

® Vertex position monitoring 4

e Determine dead time 4

e Beam separation scans /

e First algorithms will be based on non-empty event counting
® Monitoring of luminosity per BCID
e Providing instantaneous luminosity at Hz rate 102

e Monte-Carlo simulations under-way to provide initial /
calibration used before first beam-separation scans, and 107 0 10
understanding systematic

25



BCM: Processing units & signal analysis

e Input signal sampled with 2.56 GHz:
64 samples of 390ps width for each proton bunch

CrOSSing (Bc-zsns) Prag Pushbutton, SWa
e Raw data stored in DDR2 circular buffer (for >more uimes

than 3x10°BCs — 1000 last LHC turns)

e For each BC:
e Signal rising edge and width of at most first 2 signals
are reconstructed and stored in DDR cyclic buffer

ALi GPIO
System ACE Status and Eror LEDs Header, J5
Parallel Cabla IV
{PC4) JTAG, J9

PCl-tc-PCl Bridge, Us2

Reset Switches,
SW1/sWz

CPU JTAG Header, J12
LCD Interface PCI Slets
Headar, J (3.3V and 5.5V)

nectors,
Jisie

Gontroller, U28

CompactFlash

MGT Different

al
Clock Connectors, 7 1
PCl Express Slots

sbug Connector, P8 Line Out, J2

Line In, J2

(more than 2 X 10°1BCs - 800 LHC turns) :’
e On trigger signal (LVL1A) from CTP: BCM data from &%

31 Bunch crossings is formatted and sent of ATLAS ey

DAQ readout chain e b
* “In-time” and “out-of-time” coincidences, high T

multiplicity for low and high gain channels Lo =

9 trigger bits to CTP

Beam abort (if beam conditions have reached
unacceptable level)

Alarm and warning signals in less sent to DSS, DCS

26



BCM: beam abort

Beam abort algorithms:

e For initial phase: 4 Low threshold channels (horizontal modules) +
3 high threshold channels (vertical modules)

e Monitor and use later:

e X/Y (3+4 condition reached in consecutive X out of Y BCs)
e Leaky bucket (X/Y with forgetting factor)

27



BLM: induced current

Currents in BLM modules:

® Current from 14TeV p-p collisions:

* ~15nA/module (at design luminosity, 103*/cm™s1)
e Estimated form the Total Ionisation Dose plots
e Scales with luminosity

e Accidents (simulation)
e 7 TeV p on TAS gives ~1 MIP/BLM module
e 1 MIP in diamond generates ~1 fC of charge
e 25pA of current “spike” for single occurrence (1 bunch, possible
for pilot bunch)
® 40nA of continuous loss every BC (much more likely for full
LHC bunch structure)

e Diamond dark currents in magnetic field O(10pA)

e Initially threshold for 40us reading: set to 50nA
28



BCM: performance up to FPGA input

Estimated performance of BCM system in ATLAS (up to FPGA
input) for high gain channels:

®* Median S/N (for MIPs at 45° incidence) ~ 9
e Noise RMS 0 ~ 64mV
e Median signal ~ 570mV

NINQO threshold [mV]
500 400 300 200 100

g:p ]_.,3_., e 1MIP efficiency versus noise occupancy (I}Oise
£ o et rate scaled to 25ns interval — bunch crossing
= (],95— * efficiency 0.95 - 0.99 for occupancies 103-104
e * The exact level of fake rate depends on what
0.8 prrm el kind of logical combination of signals will be
() 75 | US@A i ATLAS

0. P I , ; : I~ I I
10 107 10° 107 10° 10° 107 107 107 107 1
Noise Occupancy
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BCM: performance

Noise rate measured in ATLAS pit:
e extracted noise RMS o 51-68mV (different det. modules and NINO boards)

agrees with estimation (64mV)

NINO Thr. [V]
00.1 0.2 0.3 0.4

i
OSSR N S A Side. ALiChlo=68mV......
Side A,iCh2 6=63mV
: ' ~Side-AiCh3 6=60mV...
Side A,iCh4 6=54mV
: ~Side CiChto=61TmV
QR .0 Side C,iCh2 g=5TmV
S Side C,iCh3 6=51mV
\ S f ~oide.CiChd. g=51lm\......

|

> O

O«

Occupacny

>0
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i 'y i

-
LR T = T PR T U T e TP L PP P Y T
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]0]1 R ! i — -
107 0.05 0.1 0.15 0.2
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