RD42 meeting, March 6-7, 2009

ATLAS BCM (Beam Condition Monitor) and ATLAS BLM (Beam Loss Monitor) status

Andrej Gorisek, Irena Dolenc (Jozef Stefan Institute, Ljubljana)

BCM: introduction

8 BCM detector modules around IP to monitor beam conditions close to the IP

BCM: principle of operation

Time of flight measurement to distinguish between normal collision and background events (beam gas, halo, TAS scraping) on a bunch-by-bunch basis

- x 2 detector stations (each with 4 detector modules) at $z_{BCM} = \pm 1.84$ m:
 - x particles from collisions reach both stations at the same time → "in time" hits, occurring every bunch crossing
 - x particles from **background** interactions occurring at $|z_b| > |z_{BCM}|$ reach nearest station 12.5 ns before particles from collisions at IP \rightarrow "out of time" hits
 - → use "out of time" hits to identify the background events
 - use "in time" hits to monitor luminosity (additional information provided by BCM)

Requirements:

- fast and radiation hard detector & electronics:
 - >rise time ~ 1 ns
 - >pulse width ~3ns
 - >baseline restoration ~10ns
 - >ionization dose ~0.5 MGy, 10^{15} particles/cm² in 10 years
- MIP sensitivity

BCM: readout chain

BCM: detector modules

Double - decker assembly-

- x signal passively summed before amplification
- × 2 back-to-back pCVD diamond sensors each with
 - x thickness 500μm,
 - × Size: 10×10 mm²
 - Contact size: 8×8 mm²
 - × Operated at 2V/μm (1000V)
 - x → fast & short signals
- Modules titled by 45⁰ towards beam

Front end electronics

- x 2 stage amplifier:
 - ★ 1st stage: Agilent MGA-62653, 500MHz (22db)
 - × 2st stage: Mini Circuit GALI-52,

1GHz (20dB)

BCM detector module

BCM: modules installed on Pixel Support Structure

Beam Pipe

BCM module

BCM: NINO board

- × NINO chip: Time-over-threshold amplifier-discriminator chip
- X Analogue signal converted into a digital level signal at fixed time after the input signal arrival
- X Output signal width correlated to the input signal amplitude
- X To increase the dynamic range: analogue signals split in two channels in ratio of 1:11 before "digitisation" → 16 channels (8 low and 8 high attenuation channels)

Channels (high, low atten.)	Module position
0, 8	A + x
1, 9	A +y
2, 10	A -x
3, 11	А -у
4, 12	C + x
5, 13	C +y
6, 14	C -x
7, 15	С -у

BCM: Status I

- X Detector installation: done
- X Electronics: all chain done (firmware upgrades planned)
- X DAQ/DCS/DataBase: done (cleanup ongoing)
- X DQM: histograms filled (needs some attention)
- Trigger: 6/9 bits into CTP
- X Montecarlo description: done full detector description since Athena 12-00 (bug fixed in 15-00), digitization since 14-X

BCM: Status II

- X Calibration/Other:
 Thresholds need to be set-up for all channels on the basis of signal
- X Status of luminosity determination related effort:

First ideas:

http://indico.cern.ch/getFile.py/access?contribId=0&sessionId=1&resId=0&materialId=slides&confId=17599

BCM: Status III

- * Beam separation (Van der Meer) scans:
 - X Dry run with LHC successful (end of November 2008).
 - **x** Tested communication between CCC and ACR

BCM: first results

- X ID combined cosmic run (December 2008)
- X Checked BCM data in two ATLAS DAQ trigger streams (TRT, RPC):
 - X Trigger timing plots: BCM hit distribution over 31 bunch buckets (bunch crossing intervals-25ns)
 - X Signal seen in timing plots for both streams

BLM: introduction

- X 6 detector modules (with diamond sensors) on each side of IP, installed on the Inner Detector End Plate (IDEP)
 - x z~3450mm, r~65mm
 - installed modules measured with SMU (IVs + long term bias: ATL-IC-TR-0007)

BLM: readout

- X Partially adapted from the LHC BLM developed by AB/BI group
- Modules readout by 2 "tunnel cards": BLMCFC
 - **X** BLMCFC converts current into frequency and sends encoded data over optical link to the "surface card": BLMTC
 - × Integration times ranging from $40\mu s$ to 84s
- **X** BLMTC:
 - × inserted in BCM VME crate
 - **X** VME bus used for monitoring rates and recording the postmortem buffer
 - X Modified BLMTC FPGA firmware to output beam dump signal on the front panel LEMO outputs

BLM: detector module

- Mechanical support
 - rad-hard PEEK plastic support
 - x standard double sided PCB mechanical rigidity and electrical insulation
 - * layers screwed together with M3 screws

X Sensor:

- X 8x8 mm² 0.5 mm pCVD diamond (by DD Ltd.)
- metallised at OSU
- operated at 500V
- * Assembly:
 - x conductive glue, bonding, soldering

BLM: status

- X BLMCFC crates modified and assembled with modified PS module and backplane
- X BLMTC card will be modified to output beam dump signal on the front panel
 - X Communication between SBC and BLMTC trough USB bridge established
 - x ready to bring back the module for FPGA firmware upgrade to AB/BI

setup in the lab (161 01-023)

Summary

X BCM

- Installed and operational
- X Seen first signals from cosmic data in December 2008

⊁BLM − ready

- Detector modules installed in 2008
- X All parts of hardware available

×BLM – to-do

- Install BLMCFC (PP2)
- Install all parts of PS and control chain (USA15)
- Develop code for monitoring rates (running sums) and acquiring postmortem (beam dump) buffer