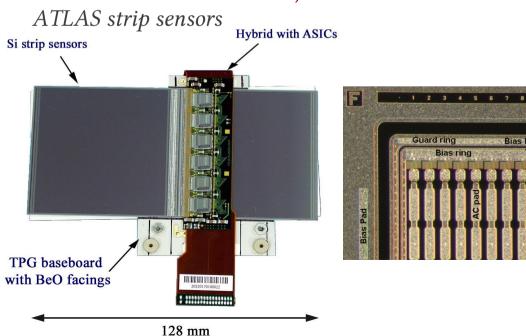
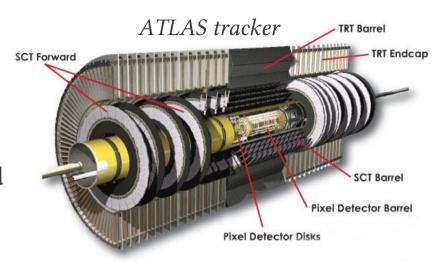
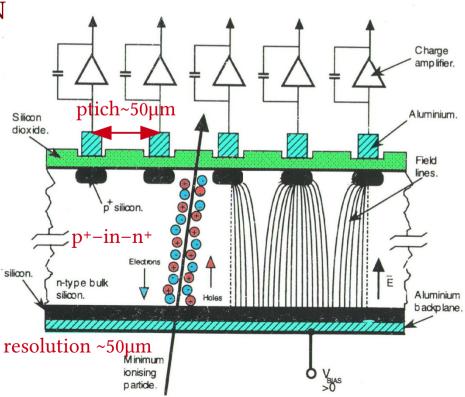
R&D of silicon detectors for HEP experiments

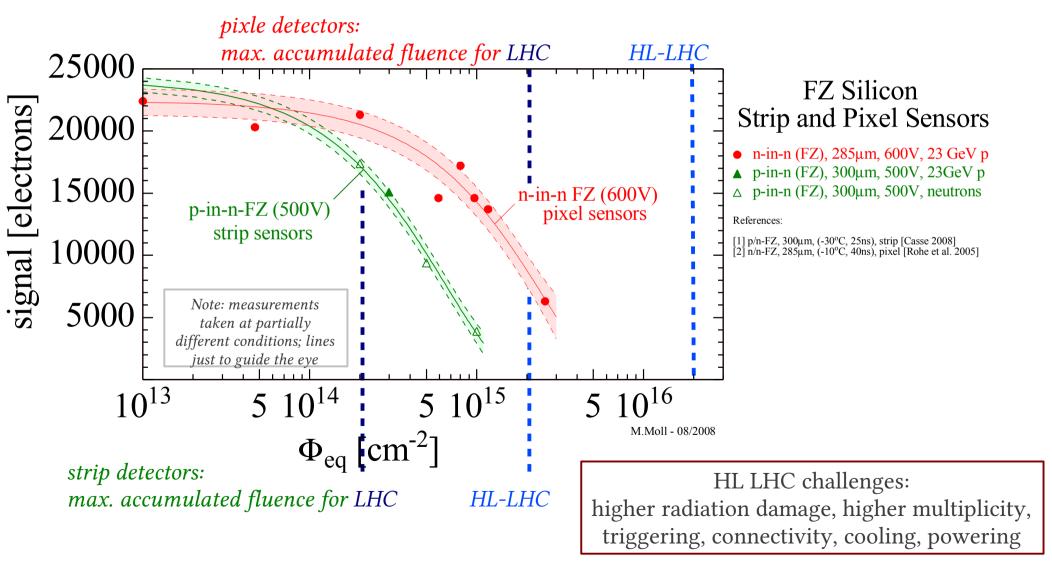

Irena Dolenc Kittelmann

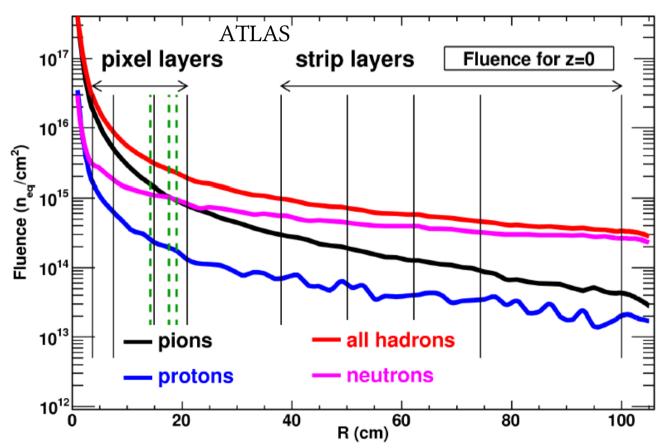

ØMIC detector workshop, Copenhagen, Denmark, 10. 12. 2012


Introduction

Segmented Si detectors in HEP:

- ◆ Used for ~ 30 years
- Fundamental part of modern HEP experiments (ATLAS, CMS.. at LHC)
- ◆ Fast signal formation times, superior spatial resolution → accurate measurement of charged particle momentum in magnetic field
- ◆ Favorite choice for tracker (Strip) and vertex (Pixel) detectors → positioned close to interaction point → radiation damage (CERN RD50 collaboration)




LHC: signal degradation

- ◆ LHC: L~10³⁴cm⁻²s⁻¹, expected to accumulate ~350fb⁻¹
- ♦ <u>High Luminosity (HL) LHC</u>: $L=5 \times 10^{34} cm^{-2} s^{-1}$, aiming to accumulate 3000fb⁻¹, planned for ~2022

HL LHC: radiation field

- ◆ Pixel detector: pion radiation damage dominating (neutrons ~10%)
- ◆ Strip detector: damage mostly due to neutrons

ATLAS Radiation Taskforce http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/RADIATION/RadiationTF_document.html

Radiation damage

- ◆Surface damage due to IEL (Ionising Energy Loss)
 - accumulation of + charge in the oxide (SiO2) and at the Si/SiO2 interface
 - affects interstrip capacitance (noise), breakdown behavior
 - can be controlled by proper design and manufacturing process
- ◆Bulk damage due to NIEL (Non Ionising Energy Loss):
 - ullet Results in defects in crystal lattice \to new energy levels in the band gap
 - $E_{k,recoil}$ >25eV: Si atom displaced out of its lattice site to form interstitial I and vacancy V (Frenkel pair), which can react with other defects to from new type of point defects (VO, V2,...)
 - $E_{k recoil}$ >5keV: <u>cluster</u> of displacements possible
 - nuclear reactions: resulting high energy fragments involved in the damage process
 - ◆ <u>Comparing the damage</u>:
 - Φ_{eq} = equivalent fluence \rightarrow fluence of 1MeV neutrons needed to cause the same NIEL
 - ◆ <u>NIEL scaling hypothesis</u>: "Observed damage in Si bulk scales with energy deposited in the NIEL interactions" → Does not hold in all cases (see later)!
 - <u>Effects on detector performance</u>:
 - Change of effective dopant concentration $N_{eff} \rightarrow$ change in full depletion voltage V_{FD}
 - ◆ Increase of *leakage current* (increased noise, high power consumption)
 - ◆ Increase of *effective trapping time* (deterioration of *charge collection efficiency CCE*)

Rad-hard solid state detector development

Strategies

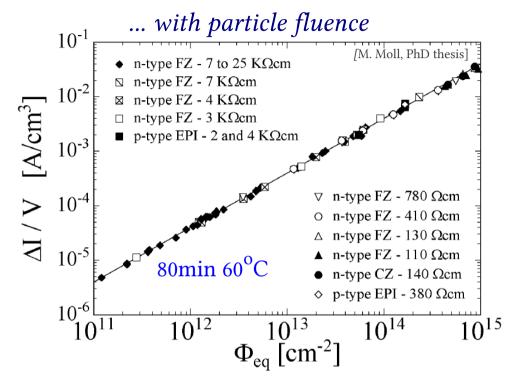
- (1) Material engineering
- (2) Detector engineering
- (3)Change of detector operation \

CERN RD39 collaboration
"Cryogenic Tracking Detectors"
operation at 100-200K
to reduce charge loss

Defect engineering

- introduction of defects, impurities in silicon bulk to improve radiation hardness
- ◆ Example: <u>oxygen rich silicon</u> (MCz, Cz, EPI, DOFZ)

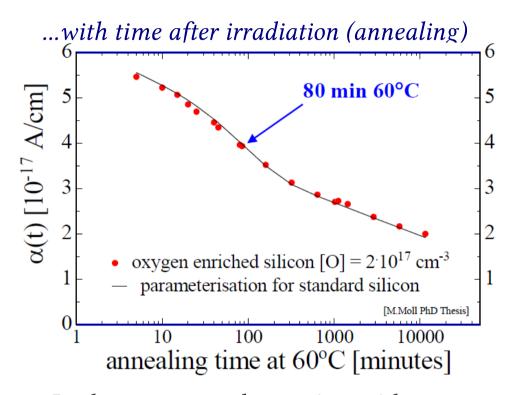
New materials


- ◆ Silicon Carbide (SiC), Gallium Nitride (GaN), Gallium Arsenide: strong rad. damage observed, no potential for HL-LHC
- ◆ <u>Diamond</u> (CERN RD42 Collaboration)

Detector engineering

- p-type silicon detectors
- thin detectors, epitaxial detectors
- 3D detectors
- Monolithic devices

Leakage current


Change of leakage current

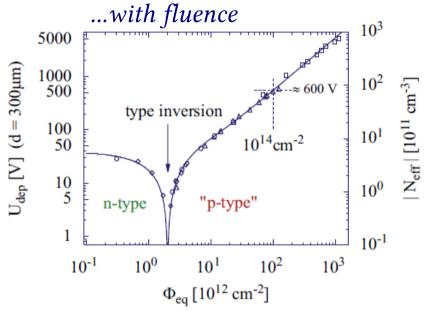
Damage parameter α :

$$\alpha = \frac{\Delta I}{V \cdot \Phi_{eq}}$$

- constant over several orders of fluence
- independent of Si impurity
- independent of particle type (except γ) \Rightarrow can be used for fluence measurement
- ◆ Note: NIEL scaling holds

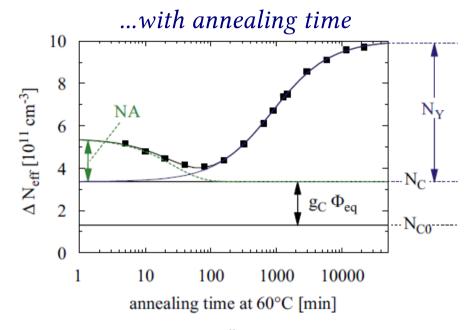
- Leakage current decreasing with annealing
- strong temperature dependence

$$I \propto \exp\left(-\frac{E_g}{2k_BT}\right)$$


⇒ cooling during operation needed!

• Example: $I(-10^{\circ}C) \sim 1/16 I(20^{\circ}C)$

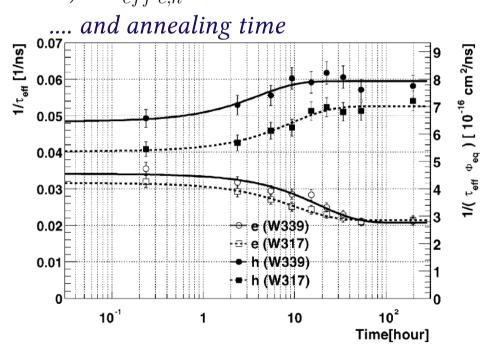
Full depletion voltage


Change of V_{FD} (N_{eff}) in standard n-type FZ detectors

charge density)

- "Type inversion": Neff changes from positive to negative (Space Charge Sign Inversion – SCSI)
- acceptor generation

$$V_{FD} = \frac{e_0 D \mid N_{eff} \mid}{2 \epsilon_0 \epsilon_{Si}}$$
 effective dopant concentration (space charge density)


- Short term: "Beneficial annealing"
- ◆ Long term: "Reverse annealing"
 - time constant depends on temperature:
 - ~ 500 years $(-10^{\circ}C)$
 - ~ 500 days $(20^{\circ}C)$
 - ~ 21 hours $(60^{\circ}C)$
 - \Rightarrow Detectors must be cooled even when the experiment is not running!

Trapping

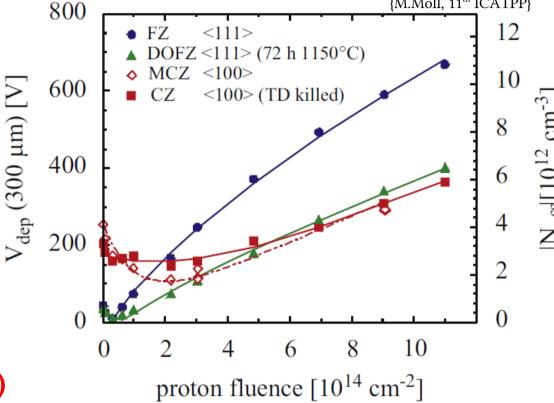
- ◆ CCE degradation due to partial depletion (underdepletion) and trapping
- Trapping is described by effective trapping probability for holes and electrons $1/\tau_{effe,h}$

 $Q_{e,h}(t) = Q_{e,h}(0) \exp\left(-\frac{t}{\tau_{eff\ e,h}}\right) \quad \frac{1}{\tau_{eff\ e,h}} \propto N_{traps}$

 $1/\tau_{\rm eff\,e,h}$ dependence on fluence 1/r_{eff,h} [1/ns] holes -- W339 (15 kΩcm,S) --- W317 (15 kΩcm,O) \star BNL920 (1 k Ω cm.S) → BNL917 (1 kΩcm.O) 0.12 0.1 0.08 0.06 0.04 0.02 10 15 $\Phi_{\rm eq}\, \rm [10^{13}\,n/cm^2]$

- After irradiation: trapping stronger for holes than electrons; charged hadrons induce more trapping compared to neutrons (NIEL violation)
- Common to all materials after irradiation (apart from γ): same increase of trapping (electrons and holes) within ~20%
- ◆ Annealing: increases trapping for holes, decreased for electrons

Oxygen rich Si: proton irradiation

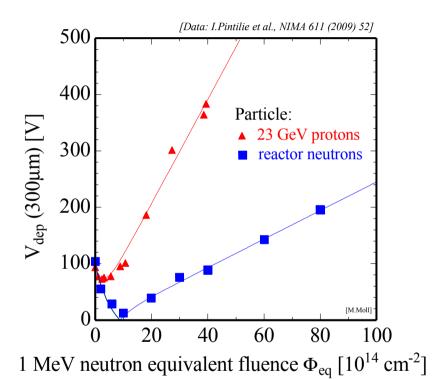

Irradiation with 24GeV/c protons

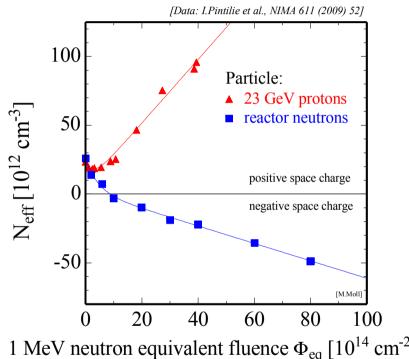
Standard FZ silicon

- type inversion at ~ 2×10¹³ p/cm2
- strong N_{eff} increase at high fluence

◆DOFZ silicon (is oxygen rich)

- type inversion at $\sim 2 \times 10^{13}$ p/cm
- smaller Neff increase at high fluence

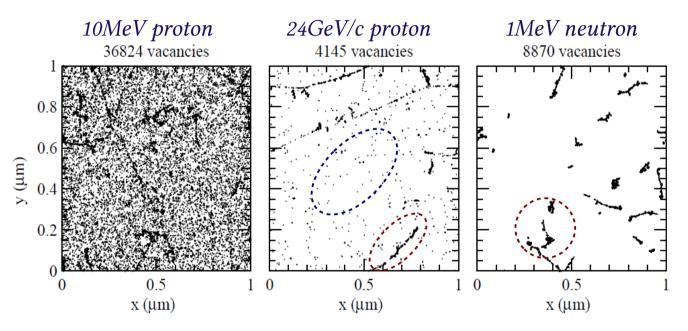

◆Cz, MCz silicon (is oxygen rich)


- "no type inversion" in the overall fluence range
- Comment: there is no "real" type inversion, a more clear understanding of the observed effects is obtained by investigating directly the internal electric field; look for ("double junction" effects, see later)

{M.Moll, 11th ICATPP}

Oxygen rich Si: neutron vs. proton irradiation

EPI silicon (EPI-DO, 72 μ m, 170 Ω cm) irradiated with 24GeV/c protons and reactor neutrons

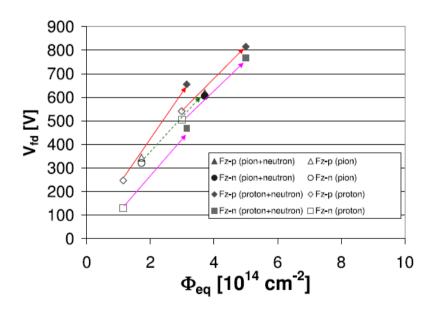


- 1 MeV neutron equivalent fluence Φ_{eq} [10¹⁴ cm⁻²]
- ◆ SCSI ("Type Inversion") after neutrons but not after protons
- ◆ Acceptor generation after neutron irradiation (as in standard FZ)
- ◆ Donor generation enhanced after proton irradiation (only in oxygen rich Si)

Why the difference in proton and neutron damage?

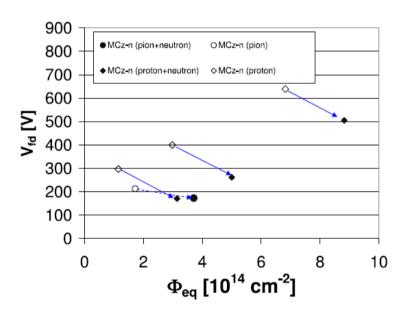
- ◆ Clusters vs. Point defects:
 - Charged hadrons create less point defects with increasing energy
 - At given particle energy, neutrons create more clusters then protons

Initial distribution of vacancies after incidence of 10¹⁴particles/cm²
[Mika Huhtinen NIMA 491(2002) 194]



- ◆ <u>A 'simplified' explanation for difference between proton and neutron damage:</u>
 - ◆ Defect clusters produce predominantly negative space charge acceptors
 - ◆ Point defects produce predominantly positive space charge donors (in 'oxygen rich' silicon)
- ◆ Comment: note NIEL violation

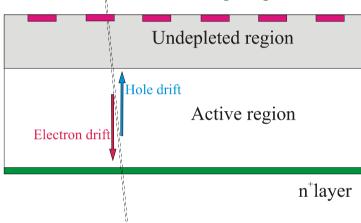
Oxygen rich Si: mixed irradiations


- ◆ MCz and Fz n-type devices exposed to mixed irradiations:
 - ◆ step 1: proton (or pion) irradiation
 - ◆ step 2: neutron irradiation
- ◆ Result: damage additive! Can we profit from that in real experiment?

FZ-n (low O concentration) accumulation of damage

[G.Kramberger et al., NIMA, 609 (2009), p142]

MCz-n (high O concentartion) compensation of damage



Device engineering: p-type devices

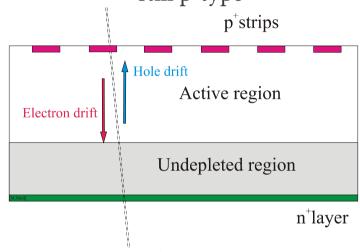
p⁺-n detector

n-type silicon after high fluence "type inversion"

p⁺strips

 High el. field region on the back (nonsegmented side)

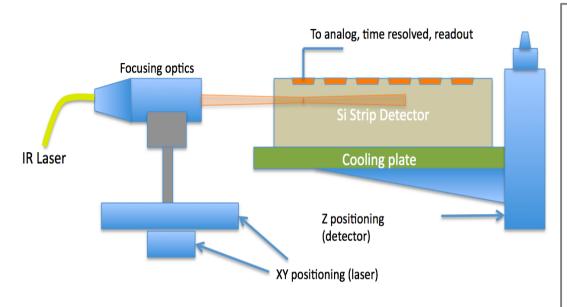
Traversing particle


- Underdepleted
 - charge spread (resolution deterioration)
 - charge loss (CCE deterioration)

Comment:

- * this is just a schematic explanation, reality is much more complex (see next slide)
- X Instead of n-on-p also n-on-n devices could be used

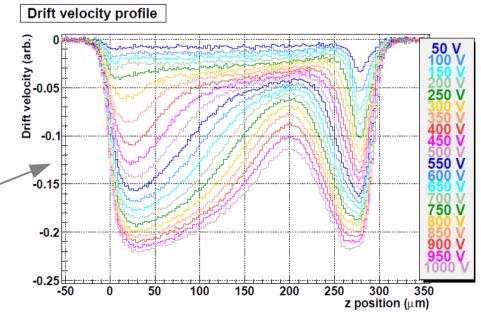
n⁺-p detector


p-type silicon after high fluence still p-type

Traversing particle

- ◆ High el. field region stays on the front (segmented side → weighting and real field stay aligned)
- ◆ Limited loss of CCE, less deterioration with underdeplition
- Limited deterioration of resolution
- ◆ Collecting electrons (3-times faster than holes)

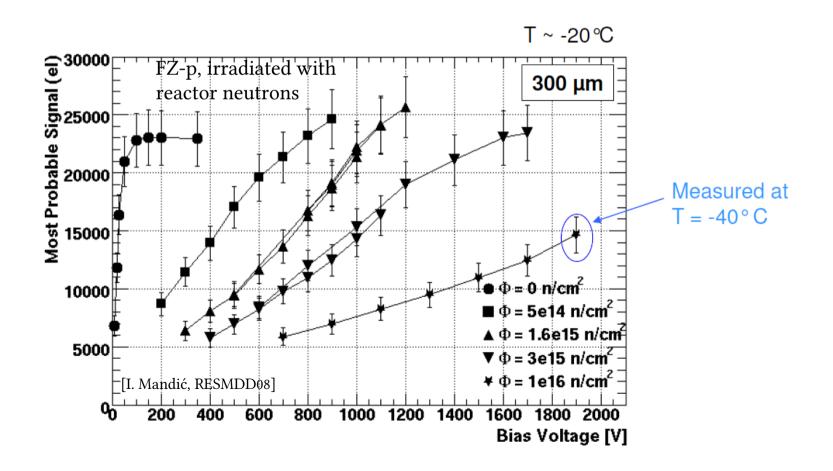
Determination of electric field


Edge-TCT (transient current technique)

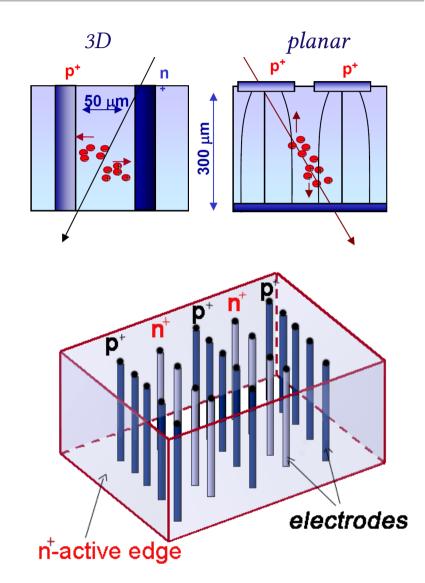
- ◆ Technique pioneered by Gregor Kramberger, Ljubljana [1]
- Sensor (strip detector) is illuminated with pulsed IR laser from the side, light focused under one of the strips
- Scan across detector thickness and record induced current signal waveforms as function of depth
- Reconstruction of drift velocity electric field, detector efficiency (also trapping probability ?) profile across the detector thickness

[1] G. Kramberger et al., IEEE TNS, vol. 57, no. 4, August 2010, p 2294

Highly irradiated detectors:


- "Double junction" form of electric field can be observed: field peak both on the back and front
- Example of drift velocity profile in: MCz-p, irradiated with 24GeV/c protons $(\Phi_{eq}=6.2\times10^{15}n_{eq}/cm^2)$

p-type devices: CM


CCE measurements of irradiated FZ p-type strip devices

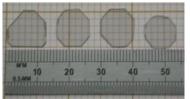
- ◆ 100% CCE observed even after 3×10¹⁵ n/cm2, also even CCE > 100% was observed
- Extrapolation of charge trapping parameters obtained at lower fluences would predict much lower signal
- ◆ Origin: 'Charge multiplication effects' due to high electric fields close to the strips

Device engineering: 3D Si sensors

- Electrodes:
 - narrow columns along detector thickness,
 - ◆ diameter: 10mm, distance: 50 100mm
- ◆ Lateral depletion:
 - lower depletion voltage needed
 - thicker detectors possible
 - fast signal
 - radiation hard (short drift path minimizes the trapping)
- promising results
- processing of 3D sensors challenging, though many good devices with reasonable production yield produced
- main drawback is the resulting high channel capacitance
- ◆ 3D sensors will be part of ATLAS IBL detector!

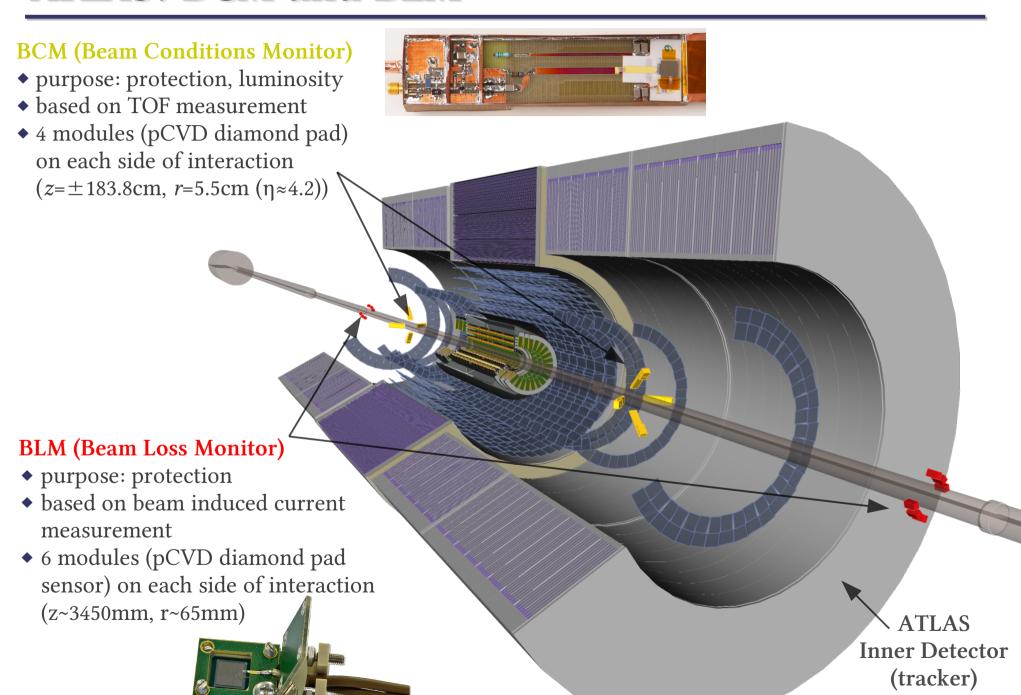
first proposed by S.I. Parker et al. [NIMA 395(1997) 328]

New materials: diamond


Property	diamond	Si
Band gap [eV]	5.5	1.12
Intrinsic resistivity @ RT [Ωcm]	>10 ¹¹	2.3×10 ⁵
e(h) mobility [cm ² /Vs]	1900 (2300)	1350(480)
e(h) sat. velocity [cm/s]	$1.3(1.7)\times10^5$	$1.1(0.8)\times10^5$
Dielectric constant	5.7	11.9
Displacement energy [eV/atom]	43	13-20
Thermal conductivity [W/m K]	~2000	150
Energy to create e-h pair [eV]	13	3.61
MIP Ionization loss [Mev/cm]	4.7	3.21
Avrg. MIP signal/100μm [e ₀]	3602	8892

- ⇒low leakage current (low noise, no cooling)
- \Rightarrow fast signal
- ⇒ low capacitance
- ⇒radiation hard
- \Rightarrow heat spreader

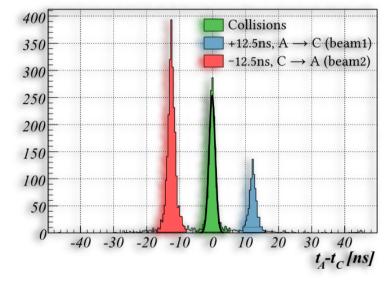
 \Rightarrow low signal

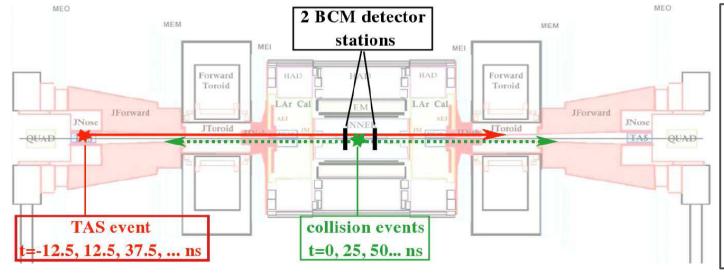


poly-CVD (16 chip ATLAS pixel module) Diamond sensors heavily used in LHC experiments for Beam Monitoring

single crystal CVD diamond (few cm)

ATLAS: BCM and BLM




19/21

ATLAS BCM: principle of operation

Time of flight measurement to distinguish between collisions and background events (beam – gas, halo, TAS scraping)

- measurement every proton bunch crossing (25ns)
- 2 detector stations at $z=\pm 1.9m$
- ◆ particles from collisions reach both stations at the same time (~6ns after collisions)
- secondary particles from downstream background interactions reach nearest station 12.5ns before particles from collisions (~6 ns before collisions)
- use coincident "in time hits" to monitor luminosity
- use "out of time hits" to identify background events

Requirements:

- fast and radiation hard detector
 & electronics:
 - ◆ rise time ~1ns
 - pulse width ~3ns
 - ◆ baseline restoration ~10ns
 - ◆ ionization dose ~0.5 MGy,
 - ◆ 10¹⁵particles/cm² in 10 years
- MIP sensitivity

Sensors for HL-LHC

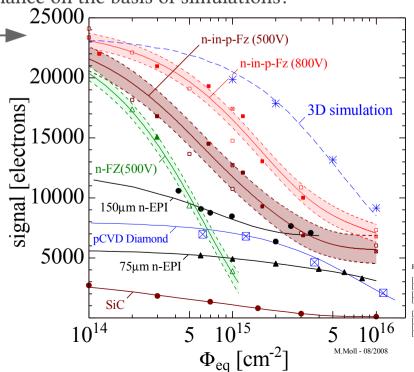
Fluences $\Phi_{eq} < 10^{15} \text{cm}^{-2}$ (outer layers – strip sensors)

- ◆ Underdepletion is dominant cause for CCE degradation
- n-MCz silicon detectors: good performance in mixed fields due to compensation of charged hadron and neutron damage (more work needed)
- p-type Si microstrip detectors: encouraging results ("base line option" for the ATLAS SCT upgrade)

Fluences $\Phi_{eq} > 10^{15} \text{cm}^{-2}$ (innermost tracking layers – pixel sensors)

- ◆ CCE degradation mostly due to **trapping** -> active thickness is significantly reduced
- Collection of electrons at electrodes essential: Use n-on-p or n-on-n detectors!
- Presently three options under investigation: planar Si (thin, p-type), 3D Si, Diamond

Questions to explore:


- Can we control multiplication effects in order to profit from them?
- Can we profit from compensation effects in mixed fields (i.e. MCz-n)?

• Can we understand detector performance on the basis of simulations?

A comparison of technologies in terms of collected charge (signal)

- measurement at partly different conditions...
- only an indication of what could be used
- for spcific applications SNR crucial! (also important: efficiency, availability, price, reliability, cooling, track resolution...

Silicon Sensors

- p-in-n (EPI), 150 μm [7,8]
- ▲ p-in-n (EPI), 75μm [6]
- n-in-p (FZ), 300µm, 500V, 23GeV p [1]
- n-in-p (FZ), 300μm, 500V, neutrons [1]
- n-in-p (FZ), 300μm, 500V, 26MeV p [1]
- n-in-p (FZ), 300μm, 800V, 23GeV p [1]
- n-in-p (FZ), 300μm, 800V, neutrons [1]
- n-in-p (FZ), 300μm, 800V, 26MeV p [1]
- **p**-in-n (FZ), 300μm, 500V, 23GeV p [1]
- p in in (12), 500pin, 600 +, 2500 + p [1]
- $\Delta~$ p-in-n (FZ), 300 μ m, 500V, neutrons [1]
- * Double-sided 3D, 250 μm, simulation! [5]

Other materials

SiC, n-type, 55 μm, 900V, neutrons [3]
 Diamond (pCVD), 500 μm [4] (RD42)

n c

| 1] p/n.F.Z. 300µm. (-30°C, 25ns), strip [Casse 2008] 2] p-FZ.300µm. (-40°C, 25ns), strip [Mandie 2008] 3] n. SiC. 55µm. (2µs), pad [Moceatelli 2006] 4] CVD Diamond, seaded to 50µm. 23 CeV p, strip [Adam et al. 2006, RD42] Note: Fluenze normalized with damage factor for Silicon (0.62) 5] 3D, double siedel, 250µm columns, 300µm substrate [Pennicard 2007] 6] n.-EPI,75µm. (-30°C, 25ns), pad [Kramberger 2006] 8] n.-EPI,150µm. (-30°C, 25ns), strip [Messinco 2007]