DIRC for a Higher Luminosity B Factory

Thomas Hadig Group B, SLAC

10³⁶ Workshop SLAC

May 9th, 2003

Overview

- Current performance
 - What defines the resolution ?
 - What have been the challenges ?
- Limitations and challenges in 10^{36} machine, possible solutions
- Current R&D status
- Other extensions

BABAR DIRC is a 3D device: PMT position (x, y) and time (t). Track trajectory known from tracking system (additional uncertainty) Unknown variables: θ_C and φ_C .

Single photon resolution using x, y measurements only : $\sigma(\theta_{C,\gamma}) = \sigma_{\text{geometric}} \oplus \sigma_{\text{chromatic}} \oplus \sigma_{\text{transport}}$ with

- $\sigma_{\text{geometric}} \approx 7.2 \text{ mrad}$ (from PMT and bar size)
- $\sigma_{\rm chromatic} \approx 5.4$ mrad (from photon production process)
- $\sigma_{\text{transport}} \approx 2 \text{ mrad} 3 \text{ mrad}$ (from bar imperfections)

Expected : $\sigma(\theta_{C,\gamma}) = 9.5 \text{ mrad}$ Measured : $\sigma(\theta_{C,\gamma}) = 9.6 \text{ mrad}$

Example: $e^+e^- \longrightarrow \mu^+\mu^-$ events: Data Per track 20-60 detected photons. 60 Simulation $\sigma(\theta_C) = \frac{1}{\sqrt{N_{\gamma}}} \sigma(\theta_{C,\gamma}) \oplus \sigma_{\text{correlated}}$ 40 20 BABAR 15000 Tracks -0.5 -1 0 10000 $\cos(\theta_{track})$ with $\sigma_{\rm correlated} \approx 1.6 \, {\rm mrad}$ 5000 (alignment and track uncertainty) $\Rightarrow \sigma(\theta_C) \approx 2.4 \text{ mrad}$ 0 Information from time not sufficient--10 10 0 $\theta_{C, \text{ track}}$ (measured) - θ_{C} (μ) (mrad) ly precise to improve θ_C resolution.

BABAR

0.5

 ± 300 ns trigger window

 ± 8 ns Δt window

80 kHz–200 kHz \otimes 10752 PMTs \otimes ±300 ns trigger window 500–1300 background hits (10% occupancy) Hit time helps to resolve ambiguities and efficiently reduce background.

Overview

• Current performance

Performs fine; close to design; significant impact on physics analysis Main issue: background in SOB; reduced by shielding.

- Limitations and challenges in 10^{36} machine, possible solutions
 - Low radiation \longrightarrow no degradation issue.
 - Requirement on resolution does not change.
 - Higher background \longrightarrow
- Current R&D status
- Other extensions

Detection System

Reduce size of Stand-Off Box \Rightarrow less background Go from pin-hole to focusing optics \Rightarrow reduced bar size uncertainty Smaller PMTs \Rightarrow reduced PMT size uncertainty PMTs with improved time resolution \Rightarrow reduced chromatic uncertainty \Rightarrow tighter time cuts \Rightarrow better background reduction

Detection System

Source of chromatic uncertainty:

- Photons are generated with different wavelengths
- $\theta_C = \theta_C(\lambda, \beta, m, ...)$ Ways to reduce chromatic uncertainty:
- Reduce wavelength range in system
 ⇒ lower number of photons detected
- Measure energy of photon
 ⇒ no (practical) detection devices available
- Measure hit time precisely

From hit time, time of track passing radiator, and photon path length

- \Rightarrow Group velocity of photon in transport system
- \Rightarrow Refractive index in transport system
- \Rightarrow Wavelength of photon

Overview

• Current performance

Performs fine; close to design; significant impact on physics analysis Main issue: background in SOB; reduced by shielding.

Limitations and challenges in 10³⁶ machine, possible solutions
 Main issue: higher background;
 Solution: smaller Stand-Off Box; smaller detector size; very good timing resolution

• Current R&D status

— Are there any detectors with these specifications ?

• Other extensions

PMT Choices

Hamamatsu H-8500 flat panel

- 8×8 pads
- $52 \text{ mm} \times 52 \text{ mm}$ size
- relatively low gain $(1.6 \cdot 10^6)$

Burle 85011 MicroChannelPlate

- 8×8 pads
- $71 \text{ mm} \times 71 \text{ mm size}$
- \bullet very low gain $(0.6\cdot 10^6)$ MCPs typically longevity problems

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}$

 $\sigma_{\rm \, pulse} < 35 {\rm \ ps}$

Operated in single photon mode

PMT

Hamamatsu H-8500 early pre-production Burle 85011

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}$ Operated in single photon mode

PMT

Hamamatsu H-8500 early pre-production Burle 85011

Amplifier

Elantec EL2075C, Philips 779

Light source

Pilas pico-second laser $\lambda=635~{\rm nm}$ $\sigma_{\rm pulse}<35~{\rm ps}$ Operated in single photon mode

PMT

Hamamatsu H-8500 early pre-production Burle 85011

Amplifier

Elantec EL2075C, Philips 779

Readout

constant fraction discrimination

Light source

Pilas pico-second laser $\lambda=635~{\rm nm}$ $\sigma_{\rm pulse}<35~{\rm ps}$ Operated in single photon mode

PMT

Hamamatsu H-8500 early pre-production Burle 85011

Amplifier

Elantec EL2075C, Philips 779

Readout

constant fraction discrimination LeCroy 2228A, 22 ps per count TDC CAMAC based readout

Using pico second laser (35 ps FWHM), low intensity \approx single photons Constant fraction discriminator, fast amplifier: Elantec EL 2075C Hamamatsu: Burle:

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}$ Operated in single photon mode Motion Controller:

Repeatability $< 7 \ \mu$ m

Light source

Pilas pico-second laser

 $\lambda=635\;\mathrm{nm}$

 $\sigma_{\rm \, pulse} < 35 {\rm \ ps}$

Operated in single photon mode

Motion Controller:

Repeatability $< 7 \; \mu {\rm m}$

ΡΜΤ

Hamamatsu H-8500 early pre-production Burle 85011

Laser Intensity Monitoring

Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}$

Operated in single photon mode

Motion Controller:

Repeatability $< 7 \ \mu m$

PMT

Hamamatsu H-8500 early pre-production Burle 85011

Laser Intensity Monitoring

Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier

Elantec, EL2075C

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}$

Operated in single photon mode

Motion Controller:

Repeatability $< 7 \ \mu m$

PMT

Hamamatsu H-8500 early pre-production Burle 85011

Laser Intensity Monitoring

Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier

Elantec, EL2075C

Readout

Single threshold discrimination

Light source

Pilas pico-second laser $\lambda = 635 \text{ nm}$ $\sigma_{\text{pulse}} < 35 \text{ ps}$

Operated in single photon mode

Motion Controller:

Repeatability $< 7 \ \mu m$

PMT

Hamamatsu H-8500 early pre-production Burle 85011

Laser Intensity Monitoring

Two standard PMTs used for calibration (Photonis XP2262B, EMI 9125FLB17)

Amplifier

Elantec, EL2075C

Readout

Single threshold discrimination 500 ps per count TDC (LeCroy 2277)

Overview of Scans

Goal: To determine

- rel. efficiency variations of pads
- rel. efficiency variations within a pad
- visible structures of PMT

Scans:

- Across the PMT along a line
- Across the whole PMT
- Across a single pad

Note:

- "Rel. efficiency" is a convolution of:
- Cathode efficiency
- Anode efficiency
- Spectral efficiency

Scan of one Line across the PMT, Hamamatsu

Scan step size:

• 100 µm

Conclusions:

- Steep pad edges
- 2 main peaks per pad, addl. microstructure

cross talk < 1% (addl. 3% electr. x-talk)

Scan of one Line across the PMT, Hamamatsu

Scan step size:

• 100 µm

Conclusions:

- Steep pad edges
- 2 main peaks per pad, addl. microstructure
- cross talk < 1% (addl. 3% electr. x-talk)
- Factor 2 to 4 difference in pad efficiency
- At pad boundary: charge sharing

Scan of full PMT, Hamamatsu

Scan step size:

- 1.0 mm vertical
- $100 \ \mu m$ horizontal

Conclusions:

 Strong variations of rel. efficiency (factor 2-4)

Scan of full PMT, Hamamatsu

Scan step size:

- 1.0 mm vertical
- $100 \ \mu m$ horizontal

Conclusions:

- Strong variations of rel. efficiency (factor 2-4)
- Obvious pad boundaries
- Pad structure visible

Zoom into z axis

Detailed Scan of one Pad, Hamamatsu

Scan step size:

- 100 $\mu \rm m$ vertical
- $100 \ \mu m$ horizontal
- **Conclusions:**
- 4 high efficient regions
- Factor 2 variation within pad

Scan of full PMT, Burle

Scan step size:

- 1.0 mm vertical
- 100 μ m horizontal

Conclusions:

• Variations of rel. efficiency (factor 2)

Scan of full PMT, Burle

Scan step size:

- 1.0 mm vertical
- 100 $\mu \rm{m}$ horizontal

Conclusions:

- Variations of rel. efficiency (factor 2)
- Obvious pad boundaries
- No pad structure visible

Zoom into z axis

Overview

• Current performance

Performs fine; close to design; significant impact on physics analysis Main issue: background in SOB; reduced by shielding.

- Limitations and challenges in 10³⁶ machine, possible solutions
 Main issue: higher background;
 Solution: smaller Stand-Off Box; smaller detector size; very good timing resolution
- Current R&D status

Candidates for detector with < 100 ps resolution and 6 mm \times 6 mm pad size exist; first test promising but lower quantum efficiency, gain Next steps: Designing and building prototype to test setup Will test prototype in our Cosmic Ray Telescope.

- Other extensions
 - Is there a way to significantly improve the resolution ?
 - What else is effecting the total resolution ?
 - Where can the PID be improved ?

Transport System

Current BABAR DIRC uses 12 barboxes with 12 bars each

- Large number of reflections from bar sides during transport.
- Point where photon exits bar unknown
 ⇒ angle uncertainty
- Resolution:

 $\sigma_{\alpha} \approx \frac{1}{L_{\rm SOB}} \sqrt{\sigma_x^2({\rm bar}) + \sigma_x^2({\rm pixel})}$

- $t_x = \sqrt{12}\sigma_x$ bar size.
- (for focusing optics: $t_x = 0$)
- Note: $\sigma_{\alpha} \neq \sigma(\theta_C)$

- Small number of reflections.
- Resolve ambiguities from reflections by time measurement (?).
- Point where photon exits bar calculable
- Resolution (no side reflection): $\sigma_{\alpha} \approx \frac{1}{L_{\text{expansion}}} \sqrt{\sigma_x^2(\text{track}) + \sigma_x^2(\text{pixel})}$
- $\sigma_x(\text{track})$ uncertainty of track
- Smaller number of reflections
 ⇒ less influence of surface effects

Estimation of Resolution

Current BABAR DIRC

- $\sigma_{\alpha} \approx \frac{1}{L_{\text{SOB}}} \sqrt{\sigma_x^2(\text{bar}) + \sigma_x^2(\text{pixel})}$
- $t_x = 35.0 \text{ mm}, \sigma_x(\text{pixel}) = \frac{1}{\sqrt{16}} 28 \text{ mm},$ $L = 1200 \text{ mm} \Rightarrow \sigma_x \approx 10.2 \text{ mrad}$
- $t_y = 17.5 \text{ mm}, \sigma_y(\text{pixel}) = \frac{1}{\sqrt{16}} 28 \text{ mm},$ $L = 1200 \text{ mm} \Rightarrow \sigma_y \approx 7.2 \text{ mrad}$
- with water magnification: $\sigma_{x/y} \approx 9.2 \text{ mrad}/6.5 \text{ mrad}.$

Plate optics

- $\sigma_{\alpha} \approx \frac{1}{L} \sqrt{\sigma_x^2(\text{track}) + \sigma_x^2(\text{pixel})}$
- $\sigma_x(\text{track}) = 4 \text{ mm}, \sigma_x(\text{pixel}) = 1.7 \text{ mm},$ $L = 4000 \text{ mm} \Rightarrow \sigma_x \approx 1.1 \text{ mrad}$
- $\sigma_x(\text{track}) = 4 \text{ mm}, \sigma_x(\text{pixel}) = 1.7 \text{ mm},$ $L = 1000 \text{ mm} \Rightarrow \sigma_x \approx 4.3 \text{ mrad}$

Bars with focusing optics

- $\sigma_{\alpha} \approx \frac{1}{L_{\text{SOB}}} \sqrt{\sigma_y^2(\text{pixel})}$
- Pixel size 6 mm, $\sigma_y = 1.7$ mm, L = 250 mm $\Rightarrow \sigma_y \approx 6.9$ mrad
- Pixel size 2 mm, $\sigma_y = 0.6$ mm, L = 250 mm $\Rightarrow \sigma_y \approx 2.3$ mrad

SuperBABAR with plate optics in x and focusing in y:

- Pixel size $6 \operatorname{mm}(x) \times 2 \operatorname{mm}(y)$
- $\sigma_x \approx 4.3 \text{ mrad}$
- $\sigma_y \approx 2.3 \text{ mrad}$

Tracking

Not really part of DIRC system but DIRC requires good tracking and alignment:

- Tracking uncertainty has direct influence on resolution (correlated term !)
- Particle tracks might be distorted in radiator (decay, interactions, δ rays)

Addition of tracking detector outside of DIRC detector would help.

End-cap detector

BABAR DIRC is barrel only detector. A fraction of the (high-momentum) particles leave in forward direction.

Idea: Add End-Cap device

Problems:

- Detectors inside magnetic field.
- Limited amount of space.

Conclusions

• Current performance

Performs fine; close to design; significant impact on physics analysis Main issue: background in SOB; reduced by shielding.

• Limitations and challenges in 10³⁶ machine, possible solutions Main issue: higher background;

Solution: smaller Stand-Off Box; smaller detector size; very good timing resolution

• Current R&D status

Candidates for detector with < 100 ps resolution and $6 \text{ mm} \times 6 \text{ mm}$ pad size exist; first test promising but lower quantum efficiency

• Other extensions

Plate geometry and smaller PAD sizes would improve resolution;

Synthetic fused silica still material of choice;

Tracking resolution important point to get further improvement;

End-cap device interesting, needs further studying.

R&D for new DIRC up and running in SLAC Group B

- Photons created in radiator
- Transported by internal reflection in light guide
- Expansion in Stand-Off Box
- Detection with PMT array

BABAR DIRC:

- Synthetic fused silica as radiator and light guide.
- $\circ\,$ Large Stand-Off Box outside magnetic field with 6000 I purified water.
- Photo multiplier tubes (PMT) : ETL 9125B, $\phi = 28 \text{ mm}, \sigma_t \approx 1.5 \text{ ns}.$

Background:

- Results in 10% occupancy
- Average rate: $\approx 80~\rm kHz{-}200~\rm kHz$
- Mostly few MeV photons from conversions in Stand-Off Box
 Increases with luminosity.
 Reduced by adding shielding
 Removed from sample by time cuts

Background induced rate estimate from special runs in February 2002: $R = 13 \frac{\text{kHz}}{\text{A}}I_{\text{HER}} + 18 \frac{\text{kHz}}{\text{A}}I_{\text{LER}} + 10 \frac{\text{kHz}}{10^{33} \text{ cm}^{-2} \text{ s}^{-1}}\mathcal{L}$ Limit in readout after TDC upgrade: 5% deadtime at $\approx 1 \text{ MHz}$.

Transport System

Requirements for radiator/transport material:

- Transparent (low photon loss over several meters of path).
- Radiation hard (BABAR DIRC: 5 kRad-10 kRad).
- High material uniformity.
- High quality optical finish (Surface uniformity < 5Å sms).
- Small radiation length X_0 (to allow for precise calorimeter outside of DIRC system)
- Synthetic fused silica seems to be best choice.

Plates :

Can plates be manufactured with a quality similar to single bars ? Plates can be produced as shown by Belle, quality is unclear

Detection System

Main challenge regarding increase in luminosity with current DIRC: Background from conversions in Stand-Off Box

Measures to reduce/handle background:

- Added shielding
- Improving readout electronics
- Reduce size of Stand-Off Box
- θ_C resolution defined by:
- Imaging method (pin-hole)
- Bar size
- PMT size
- Size of Stand-Off Box

