PID at Super-KEKB/Belle & & Aerogel-RICH R&D

Toru Iijima (KEK)

January 30, 2002 2nd Workshop on Higher Luminosity B-Factory

Physics Requirement

- Importance of K/ π separation remains unchanged also at the Super-Belle.
 - ► Flavor tagging (p<2 GeV/c)
 - For any CPV measurement in neutral B.
 - ► Two-body decays (1.5<p<4GeV/c)
 - $B \rightarrow \pi \pi / K \pi$, $B \rightarrow \rho \pi (\pi \pi \pi) / K \pi \pi$
 - B→DK/Dπ
 - Others: $\eta' \pi / \eta' K$ etc.
- Increased demand at the Super KEKB/Belle
 - ► $b \rightarrow d\gamma/b \rightarrow s\gamma$ (required reduction ~50?)
 - Good separation in inclusive measurements (multiple tracks)
 - Full reconstruction tag (efficiency/purity)
 - How about τ / charm ?
- ++ low momentum $e/\mu \pi$ separation (< 1 GeV/c) + low momentum $e/\mu - \pi$ separation (< 1 GeV/c)
 - ► $B \rightarrow K(*)$ ll (b \rightarrow sll) (especially in μ channel)

Good K/ π < 5 GeV/c \Rightarrow good μ/π < 1 GeV/c

Large impact of improved PID

Present Belle-PID

Combination of dE/dx + ToF + ACC

- Performance
 - ▶ eff.=88%/fake=8.5%.
- Concerns:
 - Background immunity
 - TOF dead time: O(10%)
 - Material thickness
 - Radiation hardness
 - "Particle ID Holes"
 - EACC works only for tagging
 - e/μ - π separation at low momentum

⇒Points of improvement @ upgrade

	Present	0.95/0.05	0.975/0.025	0.99/0.01
dy/sy (2chg)	0.64	1.3 (1.1)	2.3 (1.8)	4.6 (2.6)
dy/sy (3chg)	0.45	0.90 (0.78)	1.7 (1.2)	4.2 (1.9)
(): Endcap as it is. –				

PID w/ good eff/fake and hermeticity is important

Low momentum $e/\mu - \pi$ ID

Present Belle EID/MUID @ p< 1GeV/c

- Only weak $e \pi$ separation
- Almost no $\mu \pi$ separation

Muon ID : Combination of Range Matching to track extrapolation of KLM hits

Cherenkov detector having good K/π separation < 5GeV/c will cure e/π and μ/π separation < 1GeV/c.

Lepton/ π -ID Impact in b \rightarrow sll

PID Upgrade Options (I)

Two R&D's for Ring Imaging Devices

TOP counter (Nagoya)

Propagation time: $T = L/(c/n)/\sin\theta_c$

Proximity-Focusing Aerogel RICH (KEK-Chiba-Slovenia) Cherenkov angle: $\cos\theta_c = 1/n\beta$

Note: π -k separation at 5GeV/c $\rightleftharpoons \mu$ - π separation at 1 GeV/c

PID Upgrade Options (II)

TOP counter

- Measure for each Cherenkov photon:
 - Time-Of-Propagation with <100ps TTS
 - Horizontal emission angle
- High resolution TOF (in a sense)
 - No decay constant in light emission
 - Time measurement for all detected photons
 - \Rightarrow R&D for TOP include all aspects of conventional TOF.

Aerogel-RICH

- Utilize the high quality aerogel developed for Belle-ACC
- Large $\Delta \theta c$ than solid(liquid) radiators
 - \Leftrightarrow Light yield is the key issue because of low n.
- Proximity focusing to suit the limited space.

Both requires photodetection (in visible light region) with position sensitivity and high magnetic field immunity.

Concept of Aerogel-RICH

- High optical quality of the Belle aerogels
 ⇒RICH w/ aerogel + visible light photodetection (New trend!)
- Proximity focusing scheme
 - Suitable for Belle geometry
 - Aerogel must be thin enough not to deteriorate the angle resolution
 - Light yield is the key issue
- Considered for endcap upgrade
 - Photodetection is difficult for barrel (because of the field direction)
 - Must cover down to 0.8 GeV/c for tagging (dE/dx limit)

Aerogel RICH: R&D status

- Simulation study by M.Iwamoto (Chiba-U) & T.Iijima
- Cosmic ray tests @ J Stefan Institute: June-Oct, 2001
- First beam test @ KEK-PS (π 2): Nov. 25 Dec.3, 2001
 - ► Silica aerogel radiator: n=1.029/1.050 (2cm thick)
 - ► 6 × 6 Multi-anode PMT array (Hamamatsu R5900-M16)
 - 36% photocathod coverage:
 ^[]18mm / 30mm pitch
 - lens-based light collection system (HERAB spec.)

Aerogel-RICH: Simulation(I)

- Simulated Npe for unscattered photons.
 - Normal incidence
 - Assume 100% geometrical acceptance for photodetection

■ Higher n is preferred to have enough light yield for pions at 0.8 GeV/c.
 ⇔Lower n gives better separation at high momentum (next slide).

Aerogel-RICH: Simulation (II)

- Simulation indicates:
 - Npe>12 possible for light velocity particles
 - N=1.030 gives better separation, but light yield at around threshold (p~0.8GeV/c) may be critical. ⇒Optimal n ~1.05
 - Separation @ $4 \text{GeV/c} > 5\sigma$ possible even with 10mm read-out pad.

 \Rightarrow Need verification with experiment.

1st Beam Test Setup

Multi-anode PMT configuration

Two readout configurations:

Coarse granularity:

▶every 4 pads grouped together (144ch)

Light yield measurement

Fine granularity:

▶only 1/3 sector connected to TDC (192ch)

Angular reso. measurement

Observed Ring Image (I)

Coarse granularity, 3GeV/c pion n=1.029 (2cm thick)

CHERENKOV ANG. (run0074)

Event Display

HITS (run0078)

HITS (run0078)

Detected Npe / event

Coarse granularity, 3GeV/c pions

detected (run0093)

detected (run0100)

Observed Ring Image (II)

Fine granularity, 3GeV/c pion

▶ n=1.029, 2cm think

CHERENKOV ANG. (run0140)

RING (run0140)

Identification of μ/π

Data @ P = 0.5 GeV/c

1st Beam Test Results (Preliminary)

Light yield (Npe) / angular reso. ($\delta\theta c$) w/ 3GeV/c pion

index	Npe		δθc (mrad)	
	w/o lens	w/ lens	coarse	fine
1.029	2.21 (3.78)	3.90	12.8 (10.6)	10.2
1.050	2.25 (4.06)	3.34	15.9 (14.6)	11.6

▶ Numbers in () show MC expectation

Present guess for lower Npe than MC: data/exp ~ 0.55

- ▶ Photocathode QE (25%)
- Dynode correction efficiency (100%)
- Counting efficiency above threshold (100%)
 - (): MC assumption

Each factor could yield factor of ~ 0.8

 \Rightarrow Pad-by-pad calibration for single p.e. efficiency is underway.

R&D Targets

Improvement of high index aerogels

- ► The present production method (know-how) is not optimized for n>1.05
- N=1.05 sample from Novosibirsk showed 80% increase in Npe at the beam test.

 \Rightarrow There is large potential to improve Npe $\times 2$

Photodetection

• Good effective area ratio $(36\% \rightarrow > 70\%)$:

 \Rightarrow Flat pannel PMT

- Good single photoelectron detection
 - QE
 - S/N (Peak-valley)
 - Magnetic field immunity

\Rightarrow Hybrid PD/APD

More ideas

- Dual-radiator option
- Optics to increase area (light guide etc.)

×1.5

 \boldsymbol{x}_2

"Good" Aerogel Data

■ 80% increase in Npe with n=1.05 sample from Novosibirsk.

KEK-1.05 λ scat(400nm) ~ 15mm

Novosibirsk-1.05 λ scat(400nm) ~ 48mm

Transmission of KEK samples

Aerogel R&D

Need revisit production method of aerogels.

- ► KEK: Semi two-step method with precursor.
 - Hydrophobic
 - Not optimized for high index (~1.05)
- Novosibirsk: ???
 - Hydrophilic

⇒Will start R&D soon

- Some practical issues:
 - Surface flatness / cracks
 - ► Image distortion @ boundary of tiles.
 - \Rightarrow Trial to make large tiles
- Necessary volume = ~ 80 litters (~ 2000 litters for the present ACC)
 - Large mass production is not necessary.
 - Probably, more choices for the production methods.

Flat Panel PMT for R&D

- Newly developed 8 × 8 multi-anode PMT by HPK.
- Effective area = \Box 49mm for \Box 51.7mm package (90% coverage)
- Single p.e. peak is observable.
- Cannot be used in 1.5Tesla field, but very useful for 1st year R&D's.
 - Further performance studies and better understanding of the detector behavior.
 - Incident angle dependence
 - Effects of tile boundaries, etc.
 - Optimization of design
 - Radiator index, thickness
 - Anode pad size, etc.

- ▶ 8 pcs. Already at hand.
- Read-out electronics with preamp / analog memory / flash ADC

New Photodetector Development

- Need position sensitive photodetector (for visible light region) with good effective area and magnetic field immunity.
- Possible options;
 - Hybrid (A)PD (HPD/HAPD)
 - Good single p.e. sensitivity
 - Lower cost than finemesh ?
 - Two-year R&D project
 - Multi-anode finemesh PMT
 - Basic technology at hand
- Compact HAPD array at hand can used for initial R&D's.
- Also need studies on light guide to reduce dead area.
 - Lens system (like @ HERA-B RICH)
 - ► Fish tail plastic/air light guide

Flat panel HPD

'Flat panel HPD'

Photon counting w/ hybrid PD (typical spectrum) (146

Small HAPD Array

Dual Radiator Scheme

- Interesting option, if aerogel transmission is improved.
- Light yield can be increased without deteriorating the angular resolution.
- Need study effectiveness with simulation

List of R&D items / Time Table

Continue R&D to prove the performance and decide by FY03/end

Test

- ► Test counter w/ flat panel PMT
- Prototype w/ new photodetector
- New photodetector development
 - ► Flat panel HPD
 - Multi-anode finemesh PMT
 - Light guide
- Aerogel
 - Production method
 - Surface, size, edge sharpness etc.
- Software development
 - Detector simulator (GEANT-based)
 - Reconstruction
- Read-out electronics
- Mechanical structure

Summary

For PID upgrade, we should aim at

- Ring Imaging Cherenkov detectors which can separate K/π up to 5GeV/c.
 This will give also 1-π separation in the low momentum region, that is crucial for important urements, such as B-> Kll decays.
- PID hermeticity is essential to purify events for inclusive measurements, for which Super-Belle has advantage over hadron machine B factories.

Aerogel-RICH R&D

- Intensive R&D works are in progress. The 1st beam test has been done. Important R&D items:
- Improvement of aerogel quality
- Development of new position sensitive photodetector, having
 - large effective area / package
 - single p.e. sensitivity

Let's build a new good PID with our original idea ! You are welcome to join !

Present PID Concern: Radiation Hardness

Present: <u>20rad@CsI</u> (endcap) \rightarrow O(10^{3~4})rad/10years ?

Aerogel radiator

► Have been tested upto 10Mrad. No change was seen.

If we see some effects, proper calibration will cure the problem

Present PID Concern: Background Immunity

Detector dead time

PMT signal duration ~100ns

 \rightarrow Dead time fraction = 10⁻⁷ × N(Hz)

	TOF	BACC	EACC
Present rate	30kHz	1kHz	5kHz
Dead time	0.3%	0.01%	0.05%
× 10	3.0%	0.1%	0.5%
× 100	30%	1.0%	5.0%

- ► Electronics add more dead time (\Rightarrow M.Tanaka @ 1st wrokshop).
- Note: ACC is an ON/OFF device, and these become intrinsic inefficiency for kaon ID or rejection.

\Rightarrow *At least, TOF has to be replaced.*

R&D Cost (unit: yen)

New photodetector development	
►Flat pannel HPD	25M
► Finemesh multi-anode	5M
Aerogel improvement	2.5M
Test bench with flat panel PMT	5M
Read-out electronics	5M
Beam test & misc.	2.5M