
Dalitz plot 
ictorial representation in high-energy nuclear physics for data on the distribution of
certain three-particle configurations. Many elementary-particle decay processes
and high-energy nuclear reactions lead to final states consisting of three particles

(which may be denoted by a, b, c, with mass values m
a
, m

b
, m

c
). Well-known examples

are provided by the K-meson decay processes, Eqs. (1) and (2), and by the K- and 
K-meson reactions with hydrogen, given in Eqs.

(1)

(2)

(3)

(4)

(3) and (4). For definite total energy E (measured in the barycentric frame), these final
states have a continuous distribution of configurations, each specified by the way this
energy E is shared among the three particles. (The barycentric frame is the reference
frame in which the observer finds zero for the vector sum of the momenta of all the
particles of the system considered.) See also: Elementary particle

Equal mass representation

If the three particles have kinetic energies T
a
, T

b
, and T

c
 (in the barycentric frame), Eq.

(5)

(5) is obtained. As shown in Fig. 1, this energy sharing may be represented uniquely by 
a point F within an equilateral triangle LMN of side 2Q/3, such that the perpendiculars
FA, FB, and FC to its sides are equal in magnitude to the kinetic energies T

a
, T

b
, and 

T
c
. This exploits the property of the equilateral triangle that (FA + FB + FC) has the 

same value (Q, the height of the triangle) for all points F within it. The most important
property of this representation is that the area occupied within this triangle by any set of
configurations is directly proportional to their volume in phase space. In other words, a
plot of empirical data on this diagram gives at once a picture of the dependence of the
square of the matrix element for this process on the a, b, c energies.



Fig. 1   A three-particle system (abc) in its barycentric frame is specified by a point F so 
that perpendiculars FA, FB, and FC to the sides of an equilateral triangle LMN (of
height Q) are equal in magnitude to the kinetic energies T

a
, T

b
, T

c
, where Q denotes

their sum. See Eq. (5). Curve (i) encloses all points F which correspond to physically
allowed configurations, for equal masses and nonrelativistic kinematics; curve (ii)
corresponds to curve (i) when relativistic kinematics are used, appropriate to the decay
process (785 MeV)  + - 0.

Not all points F within the triangle LMN correspond to configurations realizable
physically, since the a, b, c energies must be consistent with zero total momentum for
the three-particle system. With nonrelativistic kinematics (that is, T

a
 = p2

a
/2m

a
, etc.) and

with equal masses m for a, b, c, the only allowed configurations are those
corresponding to points F lying within the the circle inscribed within the triangle, shown
as (i) in Fig. 1. With unequal masses the allowed domain becomes an inscribed ellipse,
touching the side MN such that MP:PN equals m

b
:m

c
 (and cyclical for NL and LM). 

More generally, with relativistic kinematics (T
a
 = (m2

a
c4 + p2

a
c2) - m

a
c2, etc.), the

limiting boundary is distorted from a simple ellipse or circle. This is illustrated in Fig. 1
by the boundary curve (ii), drawn for the   3  decay process, where the final masses
are equal. This curve was also calculated by E. Fabri for Eq. (1), and this plot is
sometimes referred to as the Dalitz-Fabri plot. In the high-energy limit E  , where the 
final particle masses may be neglected, the boundary curve approaches a triangle
inscribed in LMN.

The following points (and the regions near them) are of particular interest:

All points on the boundary curve. These correspond to collinear configurations,
where a, b, c have parallel momenta.

1.

The three points of contact with the triangle LMN. For example, point P
corresponds to the situation where particle c is at rest (and therefore carries zero 
orbital angular momentum).

2.

The three points which are each farthest from the corresponding side of the
triangle LMN. For example, point P’ on Fig. 1 corresponds to the situation where 
b and c have the same velocity (hence zero relative momentum, and zero orbital
angular momentum in the bc rest frame).

3.



If the process occurs strongly through an intermediate resonance state, say a + (bc)* 
where (bc)*  b + c, there will be observed a "resonance band" of events for which T

a
has the value appropriate to this intermediate two-body system. Such a resonance band
runs parallel to the appropriate side of the triangle [the side MN for the case (bc)*, and 
cyclically] and has a breadth related with the lifetime width for the resonance state.

Antiproton annihilation

The Dalitz plot shown for equal masses in Fig. 1 has been especially useful for
three-pion systems, since it treats the three particles on precisely the same footing.
Points placed symmetrically with respect to the symmetry axis PL represent
configurations related by the interchange of 

b
 and 

c
. The symmetry axes PL, QM, and 

RN divide the allowed regions into six sectors; the configurations in each sector can be
obtained from those corresponding to one chosen sector (for example, the sector such
that T

a
  T

b
  T

c
) by the six operations of the permutation group on three objects.

These operations are of particular interest for three-pion systems, since pions obey
Bose statistics; the intensities in the six sectors are related with the permutation
symmetry of the orbital motion in the three-pion final state. The Dalitz plot shown in Fig.
2, for the antiproton capture reaction pp  + - 0, illustrates these points. Three 
-meson bands [ (765 MeV)  ] are seen, corresponding to intermediate states + -, 
0 0, and - 0; the six sectors have equal intensity. See also: Bose-Einstein statistics

Fig. 2   Dalitz plot for 823 examples of the antiproton annihilation process, p + p  + + 
+ + 0. Arrows show positions expected for (765)-meson resonance bands, which

appear clearly for the ( + -), ( - 0), and ( 0 +) systems. Distribution is symmetrical
between the six sectors obtained by drawing the three axes of symmetry. The authors
interpret this distribution as being due to (1) the reaction pp   occurring in the I = 0 
S

1
3 initial state, (2) the reaction pp  3  (s-wave pions) occurring in the I = 1 S

0
1

initial state, with roughly equal intensities. (After C. Baltay et al., Annihilation of
antiprotons in hydrogen at rest, Phys. Rev., 140:B1039, 1965)



Relativistic three-particle system

Figure 3 depicts a less symmetric specification for a three-particle system. The
momentum of c in the (bc) barycentric frame is denoted by q, the momentum of a in the 
(abc) barycentric frame by p, and the angle between p and q by . For fixed energy T

a
, 

the points F on Fig. 1 lie on a line parallel to MN; as cos  varies from +1 to -1, the point
F representing the configuration moves uniformly from the left boundary X’ to the right
boundary X. If cartesian coordinates are used for F, with origin P and y axis along NM
(as has frequently been found useful in the literature), then Eqs. (6)

(6)

hold. Note that, for fixed x, y is linearly related with cos .

Fig. 3   Coordinate system for relativistic three-particle system. For given total energy E, 
the two momenta, q and p, are related in magnitude by the following equations: E = 
(m2

a
+p2) + (M2

bc
+p2) and M

bc
 = (m2

b
+q2) + (m2

c
+q2).

Unsymmetrical plot

The Dalitz plot most commonly used is a distorted plot in which each configuration is
specified by a point with coordinates (M2

ab
, M2

bc
) with respect to right-angled axes. This

depends on the relationship given in Eq.
(7)

(7) and its cyclic permutations, for the total barycentric energy M
bc

 of the two-particle

system bc. This plot may be obtained from Fig. 1 by shearing it to the left until LM is 
perpendicular to MN, and then contracting it by the factor 3/2 parallel to MN [which
leads to a cartesian coordinate system (T

c
, T

a
), finally reversing the direction of the

axes [required by the minus sign in Eq. (7)] and moving the origin to the point M2
ab

 = 

M2
bc

 = 0. The plots shown in Fig. 4 correspond in this way to the relativistic curve (ii) in 

Fig. 1 for two values of the total energy E. This distorted plot retains the property that
phase-space volume is directly proportional to the area on the plot. As shown in Fig. 4, 
the (ab)* and (bc)* resonance bands have a fixed location on this plot; data from
experiments at different energies E can then be combined on the same plot to give a
stronger test concerning the existence of some intermediate resonance state. On the



other hand, the (ca)* resonance bands run across the plot at 135°  and move as E
varies, so that a different choice of axes [say (M2

ca
, m2

ab
)] is more suitable for their

presentation. 

Fig. 4   An unsymmetrical Dalitz plot. Configuration of system (abc) is specified by a
point (M2

ab
, M2

bc
) in a rectangular coordinate system, where M

ij
 denotes the

barycentric energy of the two-particle system (ij). Kinematic boundaries have been
drawn for equal masses m

a
 = m

b
 = m

c
 = 0.14 GeV and for two values of total energy

E, appropriate to a three-pion system ( + - +). Resonance bands are drawn for states
(ab) and (bc) corresponding to a (fictitious) -  resonance mass 0.5 GeV and full width 
0.2 GeV. The dot-dash lines show the locations a (ca) resonance band would have for
this mass of 0.5 GeV, for the two values of the total energy E.

Conclusion

It must be emphasized that the Dalitz plot is concerned only with the internal variables
for the system (abc). In general, especially for reaction processes such as Eqs. (3) and
(4), there are other variables such as the Euler angles which describe the orientation of
the plane of (abc) relative to the initial spin direction or the incident momentum, which
may carry additional physical information about the mechanism for formation of the
system (abc). The Dalitz plots usually presented average over all these other variables
(because of the limited statistics available); this sometimes leads to a clearer picture in
that there are then no interference terms between states with different values for the
total spin-parity. However, it is quite possible to consider Dalitz plots for fixed values of
these external variables, or for definite domains for them. See also: Euler angles; 
Goldhaber triangle
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