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(from raw data to physics results)

From raw data to summary data
("Raw data -> DST“) 

k fi itrack fitting
momentum determination
calorimetry (cluster reconstr.)
particle identification (Cherenkov angle)particle identification (Cherenkov angle)

Calibration

k dtracking detectors
data (RICH) and MC (tracking) calibration

A l iAnalysis

stat. methods → other lectures 
jet reconstructionjet reconstruction
b-quark tagging
flavour tagging
fitting using kinematic constraints

l i /i l i h lexclusive/inclusive channels 
neural networks → other lectures
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From raw data to summary data

Raw data: digitized record of detector electronic 
signals; detector 

part
signal 
value

directly used for graphical presentation; 
part

Z0 →µ+µ-

for statistical analysis: need 
physics quantities

E

Z →µ µ

p, E, q, m, ....

processed data,processed data, 
summary data, Data 
Summary Tape (DST)
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From raw data to summary dataFrom raw data to summary data
reconstruction

Procedure of processing raw data to summary data: reconstruction

example: to conclude 
b t Z0 + dabout Z0 → µ+µ- decay 

one needs to 

determine small energy identifyestablish two tracks
of corresponding p

determine small energy 
deposited in EM 
calorimeter(µ)

identify µ

association of signals association of signals in hits in µ det.;association of signals 
in tracking det. into 
tracks; track fitting; 
determination of p

association of signals in 
calorim. into clusters; 
association of clusters 
to tracks

hits in µ det.; 
association to tracks 
(different 
procedures for p p
hadron ident.)
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From raw data to summary dataFrom raw data to summary data
track fitting

charged track in B ⇒ helix

association of electronic signals in 
tracking detectors into groups - tracks
pattern recognition

fitting of helix parameters to associated 
hitshits  
track fitting
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From raw data to summary dataFrom raw data to summary data
helix

h li t i tihelix parameterization: 

helix is parameterized with 5 parametershelix is parameterized with 5 parameters 
at chosen point, e.g.: 
y0, z0, ψ0, θ0, 1/R

(x =y /tanψ )(x0=y0/tanψ0)
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From raw data to summary dataFrom raw data to summary data
pattern recognition

pattern recognition: 
high number of detector hits → difficult association with helix; 
transformation of transversal helix projection p j

for parts of track (in most precise tracking detector) xS, yS, zS, ψS, φS, 1/RS
il bl TE T k Elavailable - TE, Track Element

for each other TE: calculate transformed point x’, y’;

calculate φ’ ( ∠(x’, y’) and int. point);
check | φ’- φS |<α;

from ∆z=z-z’ and ψS calculate ψ’ (∆z=RScotθ(ψ’-ψS));
check |ψ’(calculated)- ψ’(measured)|<β

join consistent TE’s 
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From raw data to summary dataFrom raw data to summary data
pattern recognition

lab. 
system transformation

helix circleinter. 
point

center circle
line

line

hit 
tangent to helix

line
trans. easier to check consistentcy 

of hits with straight line than 
with helix
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From raw data to summary dataFrom raw data to summary data
pattern recognition / track fitting

l h ith tialghorithm properties: 
minimal number of loops; 
α, β determined individually for each sub-detector;
using int point not applicable to secondary tracks;using int. point - not applicable to secondary tracks;
each TE can be associated to several tracks; 
additional info can be included (energy, direction, ...) 

track fit:
from multiple TE’s determine best helix parameters in chosen point p p p
(closest approach to int. point)

N measuring points

minimization track parameters
track model (helix)

perturbations to
d l

p

8Data analysis, B. Golob

model 
(multiple scattering)



From raw data to summary dataFrom raw data to summary data
track fitting

T k fitti l ithTrack fitting algorithms: 
divided according to 
track model usage, inclusion of model distortions (mult. scatt., energy losses)

Global Methods      Progressive Methods     Break Point Methods

Global Methods:Global Methods:
simultaneous minimization of χ2 of all measurement points;
mult. scatt. included in the error matrix 

properties:
all meas. points used simultaneously;  
simultaneous pattern recognition not possible 
(as opposed to Progressive methods);(as opposed to Progressive methods); 
calculation expensive (NxN matrix inversion); 
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From raw data to summary dataFrom raw data to summary data
track fitting

Gl b l th d t k d lGlobal method - track model: 
expected coordinate values

5 free parameters: p0=(y0, z0, ψ0, θ0, 1/R) 
(x0=y0/tanψ0)

N measured 3-dimensional points ⇒ N 3-dimensional functions 
depending on 5 parameters f(p0)

global χ2 minimization: 
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From raw data to summary dataFrom raw data to summary data
track fitting

Gl b l th d lGlobal method - example: 
straight line fit

model: y = kx +ymodel: yn = kxn+y0
N meas. of y at xn

minimization yieldsN k∆x σk∆x

2 √22 y2-y1 √2σ

3 (y3-y1)/2 σ/√2

for x =n∆x and σ =σ ⇒

4 (3y4+y3-y2-
3y1)/10

σ/√5

for xn=n∆x and σn=σ ⇒
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From raw data to summary dataFrom raw data to summary data
track fitting

P i th d (K l filt )Progressive method (Kalman filter): 
parameters after n measurement points known; 
extrapolate (track model) to (n+1)st point; 
parameters after n+1 points = average of extrapolated andparameters after n+1 points = average of extrapolated and 
measured parameters at (n+1)st point;

properties:properties:
enables simultaneous pattern recognition and track fitting;
specific scattering regions inherently included;
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From raw data to summary dataFrom raw data to summary data
track fitting

P i th dProgressive method: 
vector of parameters after n measurement points   pn

F; 
error matrix after n measurement points                Wn;   
vector of extrapolated parameters p Fe;vector of extrapolated parameters                         pn

Fe; 
extrapolated error matrix                                     Wn

e

pv∂
en

Te
n p

pDDWDW v∂
∂

== ,

χ2: sum of contribution from extrapolation and measurement:

χ2 from n pointsχ2 from n points
χ2 from extrapolat. χ2 of (n+1)st point

after minimization: set of equations for pn+1
F;

if χ2 from extrapol larger than chosen value for specific point
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if χ2 from extrapol. larger than chosen value for specific point
⇒ point not assigned to track 



From raw data to summary dataFrom raw data to summary data
track fitting

P i th d lProgressive method - example:
straight line; 
yn

F and kn
F after n measurement points;

extrapolation to (n+1)st point:extrapolation to (n+1)st point:

extrapolated error matrix:
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From raw data to summary dataFrom raw data to summary data
track fitting

P i th d lProgressive method - example:
straight line; 
start with first point, 
y F =y Fe =y my1

F =y1
Fe =y1

m, 
k1

F =k1
Fe =k1

m =0

starting error matrix:starting error matrix:
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From raw data to summary dataFrom raw data to summary data
track fitting

Gl b l th d lti l tt iGlobal method – multiple scattering:
error matrix:

σi: uncertainty of ind. measurem.;
ε : contr to uncertainty due to mult scattεi: contr. to uncertainty due to mult. scatt.
(Molièr formula:

)

track model actual track (mult.
scatt.) meas. error

uncertainty including mult. scatt.

distribution of (ymeas-yfit)/σy (“pull”) is a measure of understanding the effect of 
lt tt th th f d t di th
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y
mult. scatt. rather than of understanding the meas. errors



From raw data to summary dataFrom raw data to summary data
track fitting

P i th d lti l tt iProgressive method – multiple scattering:
mult. scatt. between nth and (n+1)st point:

included in the error matrix extrapolation;

using a corresponding mult. scatt. matrix g p g
WMS one can include specifics of material 
between nth and (n+1)st point
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From raw data to summary dataFrom raw data to summary data
track fitting

B k i t th dBreak points method:
appropriate for detectors with a limited number of 
regions with significant scattering; 

scattering angles included in χ2 as free parameters

χ2(p F) → χ2(p F,θ )χ (pn ) → χ (pn ,θn)
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From raw data to summary dataFrom raw data to summary data
momentum measurement

M ti fi ld
meas. points

charged

Magnetic field:
pt=qBR;
from curvature R one determines the 
transverse (w r t B) component of p; charged

track
transverse (w.r.t. B) component of p; 
actual meas. is curvature R;

accuracy depends on:accuracy depends on:
# of meas. points;
spatial resolution of each point;
mag. field integral BL;g g ;
momentum p;

lti l tt imultiple scattering;

bap
p t

pt += 2σ
pt
intrinsic resol. mult. scatt.
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From raw data to summary dataFrom raw data to summary data
momentum measurement

Example of momentum determination:Example of momentum determination:

if s determined by for N measurement points:if s determined by 
3 measurement points:

for N measurement points:
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From raw data to summary dataFrom raw data to summary data
momentum measurement

Multiple scattering:Multiple scattering:

21Data analysis, B. Golob



From raw data to summary dataFrom raw data to summary data
momentum measurement

Momentum meas ATLAS (µ):Momentum meas. ATLAS (µ):

intrinsic resol.

10

LHC: Atlas

10

LHC: Atlas

Muon Drift Tube chambers (MDT)

5

Muon Drift Tube chambers (MDT)
3 meas. points in barrel;
σ(x) = 50 µm
L = 4 m
B 1T (BL 3 9 Tm)

mult. scatt.
(~const.)B = 1T (BL = 3 - 9 Tm)

1000 GeV µ from W',Z'
=> σ(p)/p ~ 10%

p 
[GeV]

10 100

( const.)
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From raw data to summary dataFrom raw data to summary data
calorimeter showers

Calorimeters 
are granulated
( d f i di id l ll )(composed of individual cells);
charged and neutral particles deposit 
energy in several cells;
to measure E of particle (or even 
hadronic jet) need method of associating 
individual cell energy deposit to

φ

2nd layerR

individual cell energy deposit to 
particles (“clustering”)

purpose of clustering:

η

2nd layerR

ATLAS LiAr EM calorim.: 

purpose of clustering: 
improved signal/noise (considering 
correlations among cells);
separation of EM/hadronic showers;

accordion geom.;
3 layers in radial direction;
2nd layer: ∆η x ∆φ = 0 025 X 0 025

separation of EM/hadronic showers;
search for isolated particles (e, γ, µ,...)
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2nd layer: ∆η x ∆φ = 0.025 X 0.025
η = -ln (tg Θ/2)  ( ⇒ 4 cm X 4 cm)



From raw data to summary dataFrom raw data to summary data
calorimeter showers

Reconstruction in few steps: 
basic selection of cells 

rejection of cells with known noise (online);
selection of cells with high signal (“seed”) and neighbouring cells with 
lower signal;lower signal;
Ei/Enoise,i > a (a=3,4,...) and Ei+1/Enoise,i+1>b (b=2,3,...);

association of cells into showersassociation of cells into showers
several known alghoritms, e.g. Mulguisin alghoritm

H d l iHadron calorim.
for hadronic jets energy meas.;
precision of reconstruction reflects in invariant mass resolution

optimization of clustering depends on
luminosity;
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luminosity;
process under study;



From raw data to summary dataFrom raw data to summary data
calorimeter showers

Mulguisin algorithm:
- search for cell with largest E deposit –g p
represents initial shower; dimension set to 
calorim. spatial resolution R0;

- search for cell with 2nd largest E deposit; 

calculate distance between two cells;- calculate distance between two cells; 
if smaller than shower dimension ⇒ assoc. cell to shower;

( l l t h t ( i ht d)(can calculate new shower center (weighted); 
new shower dimension can be set to max. dist. between shower center 
and each assoc. cell;)

if larger than shower dimension ⇒ start of new shower with dimension R0
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- repeat until all cells taken into account;



From raw data to summary dataFrom raw data to summary data
calorimeter showers

Mulguisin algorithm, implementations:
cell
shower

size and direction of shower const.

size of shower const., 
direct recalculateddirect. recalculated 
at each step

size and direct. of 
h l l t d
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shower recalculated 
at each step



From raw data to summary dataFrom raw data to summary data
calorimeter showers

Resolution on dijet invariant mass:
LHC simulation;                                           event + 30 min. bias events:
individual event: σM/M

[%]σM/MM/
[%]

→ increasing allowed shower size ⇒
larger fraction of E reconstr. ⇒ better resol.

← decreasing allowed shower size ⇒
smaller fraction of E reconstr. ⇒
worse resol.;
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g o se eso ;
→ increasing allowed shower size ⇒
larger fract. of E from other events ⇒
worse resol.



From raw data to summary dataFrom raw data to summary data
particle identification

Hadron identification
most detectors use some variation 
of Cherenkov light detection; 

Cherenkov ring detectors: 
photons in detector ⇒ radius of ring 
⇒ Cherenkov angle ⇒ particle velocity ⇒ mass⇒ Cherenkov angle ⇒ particle velocity ⇒ mass

large number of γ’s – impossible to 
consider all combinations;consider all combinations;

charged track (through geometry dependent 
equations) determines ring center; BaBar - DIRCq ) g ;

consider only γ’s consistent with ring center 

( ) N θθC=θC
exp(mi) ± NσθC

θc
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From raw data to summary dataFrom raw data to summary data
particle identification

Cherenkov ring detectors
likelihood function:

L(N N ) = N θ = f(p m)L(Nexp,Nbg) = Nexp, θC = f(pi,mi)

background: 
uniform distrib. overuniform distrib. over 
detector surface

L(Nexp,Nbg)/L(Nexp=0,Nbg): measure of probability for set of γ’s toL(Nexp,Nbg)/L(Nexp 0,Nbg): measure of probability for set of γ s to 
originate from a particle with (pi,mi)
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From raw data to summary dataFrom raw data to summary data
particle identification

Cherenkov ring detectors
particle separation:
from L(Nexp,Nbg)/L(Nexp=0,Nbg) ⇒ P(mi)
P(mi)/P(mj) particle separation( i)/ ( j) p p
e.g. HERA-B P(π, not K)/P(K, not π):
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CalibrationCalibration
Tracking detectors

actual

Tracking detectors calibration
individual subdetectors must be 

l i t i t d th i

actual 
measurement

ideal
meas.

properly inter-orineted, otherwise
tracks distorted;

for any calibration need
sample (tracks, decays, ...) with 
precisely known detectorprecisely known detector 
response

actualid l actual 
position

ideal 
position
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CalibrationCalibration
Tracking detectors

Description of detector (mis)alignment
position of individual subdetector w.r.t. reference 
( t i l h i ll iti d d t t )(most precisely mechanically positioned detector) 
described by set of small parameters α
(translation, rotation, t-delay,...)(t a s at o , otat o , t de ay, )

assume linear relation

αvvv Sqq extmeas =− qmeas: vector of measured coordinates
qext:    vector of extrapolated coord.

(from the reference detector)
S t i d di iS:       matrix depending on measuring 

coord., track model, detector 
geometry

i lsimplest case:
α composed of 3 translations and 3 rotations

α =(ηx,ηy,ηz,εx,εy,εz)
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CalibrationCalibration
Tracking detectors

Determination of position
minimization: 

k ∈meas. points

meas ext meas ext

result:

p

extmeas ext

k ∈meas. points

vector of displacements α

di t i bd t t t d bcoordinates meas. in subdetector are corrected by α
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CalibrationCalibration
Tracking detectors

Appropriate sample
often cosmic rays; 
th d b d

hits in other 
detector

other decays observed, 
e.g. Z0 → µ+µ- (LEP);

extrap.
track

(needed also to check 
the alignment method) 

hits in 
reference 
detector
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CalibrationCalibration
Tracking detectors

●meas hits
Appropriate sample
e.g. Z0 → µ+µ- (LEP);

●meas. hits
●extrap. hits

reference
ddet.

extrapolations of 
meas. tracksδ
do not intersect 
in interaction point
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CalibrationCalibration
Tracking detectors

ExampleExample
Delphi detector at LEP

[(1/ ) (1/ t)]/(1/ t)
δ [cm]

< >=36 µm
σ = 58 µm

[(1/pt)-(1/pt
ext)]/(1/pt

ext)
before

σ = 58 µm µ+ µ-before

after

< >=1.7 µm
after

< > 1.7 µm
σ = 41 µm
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CalibrationCalibration
Data and simulation

Calibration of data and MC simulationCalibration of data and MC simulation 
example of RICH (Delphi at LEP)

sample with known detector response:sample with known detector response:

cosθC = 1/βn
tracks with p>6 GeV; even protons at p>6 GeV β=1 - 10-2

sample yields value of n;

expected error on θC, σ (θC) needed for fits; 
(θC

meas - θC
exp)/σ(θC) ”pull” examined;( C C )/ ( C) p ;

pull distribution properties: 
for gaussian distribution of θC

meas :
<>=0<>=0
σ=1                   if σ ≠1 ⇒ correct σ(θC)
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CalibrationCalibration
Data and simulation

example of RICH
θC

meas - θC
exp [rad]

example of RICH 
(Delphi at LEP)

<>=4.9 ±0.2 mrad

before
after

0 ad
<>=0.01 ±0.08
mrad

same method and
corrections applied 
to MC simulation
to match the data

(θC
meas - θC

exp)/σ(θC)
to match the data

before

after

σ=1.30 ±0.03

σ=1.01 ±0.01
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Analysis of dataAnalysis of data
Hadronic jets reconstruction

quark productionquark production 
observable jets 

example of jet formationexample of jet formation

reconstructed jets ⇒
finterpretation of 

processes at parton level
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Analysis of dataAnalysis of data
Hadronic jets reconstruction

jet reconstructionjet reconstruction 
experimental method 
(assigning tracks to jets, calculation of energy, ....);

observables (# jets # tracks in jet angular distributions )observables (# jets, # tracks in jet, angular distributions,...)
must be expressed in terms of theory parameters 
in order to test predictions;

definition of jet 
should be appropriate for exp. usage and theoretical calculations in order pp p p g
to confront theory & experiments

Algorithm for track associationAlgorithm for track association

resolution parameter                              combination of tracks

ycut;                                                      e.g. pjet = pi + pj;
if yij < ycut two tracks in 

j
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same jet



Analysis of dataAnalysis of data
Hadronic jets reconstruction

jet reconstructionjet reconstruction 
algorithms

name                resolution parameter                    combination       comment

preserves E, pp , p

preserves p

Epreserves E, p;
resummable 
NLO log’s

in Table:
momentump
momentump

i

i

−→
−→

3
4

v

higher order calculations in perturbative QCD performed for massless partons
⇒ resolution parameters calculated for massless partons;
summing two jets 4-momenta in general leads to a non-zero mass object (new jet);
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summing two jets 4 momenta in general leads to a non zero mass object (new jet);
several algorithms exist to avoid the problem



Analysis of dataAnalysis of data
Hadronic jets reconstruction

alghorithms comparisonalghorithms comparison
for all alghorithms perturbative calculations exist to O(αs

2), 
e.g. relative rate of n jets: 

using above predictions + models of hadronization
comparison of parton and hadron distributions
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Analysis of dataAnalysis of data
Hadronic jets reconstruction

alghorithms comparisonalghorithms comparison
n jet rates vs. ycut

before hadronization
(parton level)

JADE

(parton level)
2 jets
3 jets
4 jets4 jets

-- after hadronization

smallest hadronization
corrections for 
JADE and DURHAM

P DURHAM

JADE and DURHAM

y t
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ycut



Analysis of dataAnalysis of data
Hadronic jets reconstruction

alghorithms comparisonalghorithms comparison
n jet rates vs. E

smallest hadronizationsmallest hadronization
corrections for 
JADE JADE
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Analysis of dataAnalysis of data
Heavy quark tagging

Heavy (b) quark taggingy ( ) q gg g

H(m >150 GeV) → bb > 50%; CPV in B system; ....

try to discriminate b initiated jets from others;
use properties of hadrons composed of b quarks:

lifetime                   mass                             energy

1.6 ps 5.3 GeV in fragmentation higher 
than for other hadrons

lifetime:
γcτ >γcτ δ > δ

decay prod.
of B decay prod.

of D
γcτB>γcτD δB > δD

impact
parameter
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parameter
inter. point



Analysis of dataAnalysis of data
Heavy quark tagging

Heavy (b) quark taggingy ( ) q gg g
mass:
example of 
rapidity forrapidity for 
B(M) →X(E1)Y(E2);

large M small y;large M ⇒ small y;
average # of decay products higher for B than D
⇒ y even smaller
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Analysis of dataAnalysis of data
Heavy quark tagging

Heavy (b) quark taggingy ( ) q gg g
combination of several 
discriminating variables 
into single one ra

te
d)

into single one
(likelihood ratio);

example for Delphi N
B(

ge
ne

example for Delphi
at LEP; 

ec
te

d)
/N

actual method for 
b-tagging depends on 
specific experimental N

B(
se

le
p p

conditions

NB(selected)/Nall(selected)
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Analysis of dataAnalysis of data
Summary

Path from electronic signal detection to result for measured physical 
titi i l b f tquantities involves a number of steps 

Each of those represents a specific problem and requires specific 
methods and solutions (some of those illustrated here)

Quality (correctness and accuracy) of the final results depends crucially Q y ( y) p y
on the quality of reconstruction of raw data
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