Basics

Charged particle of mass m and velocity Ae interacts

electromagnetically with detector medium via a photon of

energy hw and momentum hk

P

track p = q/mcg g

ik

Conservation of energy and momentum gives

hw(1 — %h—w) = hk - fe — L

mc? 2ym

typically hw << ymec? and hk << yme —
w =k - fc = Bck cos V. (1)



vBasics: dE/dx,
Cerenkov, Trans.

Rad

-2

The photon also has to satisfy the dispersion relation for

a given medium with a dielectric constant ¢

W2 - — (2)
From (1) and (2) we get

Vepcost =1

which has a solution with a real value of ¥ if

Ves =np > 1. (3)

In this case real (Cerenkov) photons are emitted, and the
emission angle is called Cerenkov angle ¥..

N.B. In discontinuous media diffraction causes real photon emission

even if (3) is not fulfilled (transition radiation).

Cross-section for emission (see Appendix for details)

d(c;_;) = 7= th(uZ) log [(1 — B%€1)? + Bed]

L
2

+ BZIW ”’,gff; ) log [M] (ionis., excit. — dE/dx)
+ =7 n 1hc B2 - %50 (Cerenkov, TRD)
+ 327 (hi,)z Ohw 5(;—“)’)61(71&}’) (0 electrons)
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Three frequency ranges: ¢, &, vs frequency ™"
1) Optical region: ¢ real and >1. The medium is transparent. and Cerenkov
radiation is emitted by particles with velocity above the threshold.
2) Absorptive region: & complex. Imaginary part makes the range of photons
short.
3) X-ray region: ¢ nearly real and <1. Cerenkov threshold is greater than c, but

sub-threshold Cerenkov radiation can be emitted at discontinuities in the
medium --> X-ray Transition Radiation.



Derivation of
do/d(how)
a la Allison, Cobb

— Solve Maxwell’s Equations with charge density

p = eod>(F — gct) and current density j = Scp —
Ok, w) = 5=9—=5(w — k- Be)

2meeg k2

Ak, w) = =<0 (wh/k>—fc) §(w —k - Be)

2meqc? (ew? /c2—k2)
— E(r,t) =
e [ [TiwA(k,w) —ikg(k,w)]e =D dPkdw (A1)

The energy loss is due to the component of this

electric field in the direction 3 doing work on the
particle at the point 7 = gct:

< 48 >= DE(Bet,t) - B (A2)

The energy loss is re-written as a probability of energy

transfers

< 4B 5

= JoT d(hw) [ d(hk) nehw 7 (A3)
where n. is the electron density and d(hj)zg(hk) s the

double differential cross section per electron.



Derivation of
do/d(hw) a la
Allison, Cobb - 2

Comparing (A1) and (A2) with (A3) we derive
dt.‘
d(hw)d(hk) -

o o [P — o) mprty — emt]
This formula already shows the 1/3? factor which
dominates the rate of energy loss at non relativistic
velocities.

Determine the complex function e(k,w) = €1 + i€q
- photoabsorption from cross-section o (fiw) and sum
rules — €5 for on mass-shell photons (w = kc¢),
- the Kramers-Kronig relation — €1 in terms of e,
- the dipole approximation — for small k e(k,w) is
independent of £ at fixed w,
- constituent scattering from quasi-free electrons and
the Bethe sum rule — € in the large £ off-mass-shell
region.
Integrate the cross section over momentum transfer
iy = A Sz log [(1= P+ ]
+ 58 T log [ ]
+ 53‘”20 B = 2]©
+ 2 ke [ 28 d ()

.2
dmeghe
€1 and €, are the real and imaginary parts of the

where o = is the fine structure constant,

on-mass-shell dielectric constant and



Mean excitation energy vs Z
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Figure 27.5: Mean excitation energies (divided by Z) as adopted by the ICRU [8].
Those based on experimental measurements are shown by symbols with error flags;
the interpolated values are simply joined. The grey point i1s for liquid Ho; the black
point at 19.2 eV 1s for Hy gas. The open circles show more recent determinations
by Bichsel [10]. The dotted curve is from the approximate formula of Barkas [11]
used 1n early editions of this Review.



Mean energy Ioss In different materials
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Figure 27.3: Mean energy loss rate in liquid (bubble chamber) hydrogen. gaseous

heliim,

carbon,

aluminum, iron, tin, and lead. Radiative effects, relevant for

muons and pions, are not included. These become significant for muons in iron for
G 2 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 27.21.



Energy loss at minimum for different materials
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Figure 27.2: Stopping power at minimum %Unizaticm for the chemical elements.
The straight hine 1s fitted for Z > 6. A simple functional dependence on Z 1s not to
be expected, since (—dFE /dr) also depends on other variables.



Energy loss as a function of
energy of a heavy particle
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Fig. 27.1: Stopping power (= (—dFE/dzx)) for positive muons in copper
as a function of 3v = p/Me¢ over nine orders of magnitude in momentum
(12 orders of magnitude in kinetic energy). Solid curves indicate the
total stopping power. Data below the break at g+ =~ 0.1 are taken from
and data at higher energies are from Ref. 1. Vertical
bands indicate boundaries between different approximations discussed

ICRU 49 [2],

in the text. The short dotted lines labeled “u—

" illustrate the “Barkas

effect,” the dependence of stopping power on projectile charge at very low

energies [3].



Stopping of heavy charged particles in
matter: enerqy loss and range

A Fig. 2.5. A typical Bragg curve showing the variation of dE/dx as

a function of the penetration depth of the particle in matier. The
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Range
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Figure 27.4: Range of heavy charged particles in hiqud (bubble chamber
hydrogen, helium gas, carbon, iron., and lead. For example: For a K™ who

momentum is 700 MeV /e, Gy = 1.42. For lead we read R/M = 396, and so

range is 195 g em 2.



Straggling functions: energy loss
distribution
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Figure 27.7: Straggling functions in silicon for 500 MeV pions, normalized to
unity at the most probable value dp/x. The width w is the full width at half

maximum. See full-color version on color pages at end of book
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Fig. 2.18, Typical distribution of energy loss in a
thin absorber. Note that it is asymmetric with a long
high energy tail



Energy loss distribution
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Fig. 2.19. Vavilov distributions for various x. For comparison, Landau’s distribution (denoted by the L) for
x = 0 is also shown (from Seltzer and Berger [2.29])



KeV

100 X Probability of energy loss per

Energy loss distribution

Pulse height | arbitrary units

6 12 18 24 30 36 42
T IT‘IT ]‘l‘ rTﬁﬁ—T TTTT? T T ]
60 L—-
I~ 7 300
50— -
]
# * Vavilov theory ]
404 —==— Symon theory
Experimental points __| 00
-
30— 1 4
- -
20— 7]
—1100
) -
10— N
B :
ol | I 1 o
10 20 30 40 50 60 70 80 90 100

Energy loss [KeV]

Counts per pulse height intervat

Fig. 2.20. Comparison of Vavilov’s and Symon’s
theories with experiment (from Seltzer and Berger
[2.29))



Multiple Coulomb scattering
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Figure 27.9: Quantities used to describe multiple Coulomb scattering. The particle
15 incident in the plane of the figure.



Electrons: fractional energy loss, 1/E dE/dx
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Figure 27.10: Fractional energy loss per radiation length in lead as a funetion of
electron or positron energy. Electron (positron) scattering is considered as ionization
when the energy loss per collision is below 0.255 MeV, and as Mgller (Bhabha)
scattering when it 1s above. Adapted from Fig. 3.2 from Messel and Crawford,
Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air
Absorbers, Pergamon Press, 1970. Messel and Crawford use Xo(Pb) = 5.82 g/cm?,

but we have modified the figures to reflect the value given in the Table of Atomic

and Nuclear Properties of Materials (X(Pb) = 6.37 g/cm?).



Very high energy muons:
bremsstrahlung like electrons
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Figure 27.21: The average energy loss of a muon in hydrogen, iron, and uramum
as a function of muon energy. Contributions to dF /dzr in iron from ionization and

the processes shown i Fig. 27.20 are also shown.



Stopping of electrons in matter
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Low energy electron scattering off a thin foll
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Fig. 2.15. Angular distribution of 15.7 MeV electrons
scattered from a thin Au foil (from Hanson et al.
[2.22]). The experimental values are compared with
the Gaussian approximation to multiple scattering



Low energy electron back-scattering
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Fig. 2.17. Some measured electron backscattering coefficients for various materials. The electrons are per-
pendicularly incident on the surface of the sample (from Tabara et al. [2.24])



Interaction of
photons with
matter
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Figure 27.14: Photon total cross sections as a function of energy in carbon and
lead, showing the contributions of different processes:

Op.e.
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Atomic photoelectric effect (electron ejection, photon absorption)
Rayleigh {coherent) scattering—atom neither ionized nor excited
Incoherent scattering (Compton scattering off an electron)

Pair production, nuclear field

Pair production, electron field

Photonuclear interactions, most notably the Giant Dipole Reso-
nance [46]. In these interactions, the target nucleus is broken up.



Absorption length & (g/em?2)
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Figure 27.16: The photon mass attenuation length (or mean free path) A
— 1/(p/p) for various elemental absorbers as a function of photon energy.
The mass attenmation coefficient is p/p. where p is the density. The intensity
I remaining after traversal of thickness ¢ (in mass/unit area) is given by
I = Iy exp(—t/A). The accuracy is a few percent. For a chemical compound or
mixture, 1/ g & > Jements WZ/AZ, where wyz is the proportion by weight of
the element with atomic number Z. The processes responsible for attenuation
are given m not Fig. 27.10. Since coherent processes are mecluded, not all
these processes result in energy deposition. The data for 30 eV < E < 1 keV
are obtained from http://www-cxro.lbl.gov/optical_constants (courtesy of
Eric M. Gullikson, LBNL). The data for 1 keV < E < 100 GeV are from
http://physics.nist.gov/PhysRefData, through the courtesy of John H.
Hubbell (NIST).
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Figure 27.17: Probability P that a photon interaction will result in conversion to
an eTe” pair. Except for a few-percent contribution from photonuclear absorption
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Figure 27.18: An EGS4 simulation of a 30 GeV electron-induced cascade in iron.
The histogram shows fractional energy deposition per radiation length, and the

curve 18 a gamma-function fit to the distribution. Circles indicate the number of
electrons with total energy greater than 1.5 MeV crossing planes at X/2 intervals
(scale on right) and the squares the number of photons with E > 1.5 MeV crossing
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Photons: pair production

Pair production cross
section in Pb
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Fig. 2.25. Pair production cross
section in lead
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