Detection of neutral particles

detection of neutrons

detection of neutrinons

detection of low energy photons

(detection of high energy photons = calorimeters)

Peter Krizan, Neutron and
neutrino detection



Detection of neutral particles

Detection of neutral particles = let them interact with
the detector medium, detect resulting charged
particles.

gamma %\photo-electrem

Peter Krizan, Neutron and
neutrino detection



Interaction of low energy photons with

matter - 1

Photoeffect:

- E-3-> 7> + discontinuities (around
electron binding energies)

- all energy absorbed

Compton effect:
- Z InE/E

- only part of photon energy
transferred to the electron

Pair production: Z2, important
much above the threshold (2m,)

Peter Krizan, Neutron and
neutrino detection
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Interaction of low energy photons with
matter - 2

Attenuation coefficients for lead and silicon
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Example of a gamma detector
Scintillator (NaI) with PMT
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Typical spectra, scintillation counter

Photopeak, Compton edge, escape peak
7EB7E Nal Detector: "'Cs Spectrum
A7 knl BEY kel

Cawmnts

Energy (ke

Peter Krizan, Neutron and
neutrino detection



Typical spectra 2

T6B76 Mal Detector: *Co Spectrum

Erviai gy (M)

Peter Krizan, Neutron and
neutrino detection



Gamma detection, energy resolution

Resolution: limited by statistics of primary ion-electron
pairs (mean ionisation energy W)

Naive: o(E)/E = (W,/E)Y/?

Total absorption > total energy fixed:

o(E)/E = (FW/E)Y?

- Fano factor F, F=1 for scintillators, 0.2 for gases,
and 0.12 semiconductors

Better resolution: exchange scintillator (W,=30eV) with
semiconductor (W,=3.6eV)

Peter Krizan, Neutron and
neutrino detection



Gamma detection in a semiconductor
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Comparison: radiation spectrum as measured with a Ge (semiconductor)
in Nal (scintillation) detector
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(J.C1l. Philippot, TEEE Trans. ™WNucl. Sci. WS-17/3 (1970) 44G)




Germanium detectors
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the sides leaving an insensitive core (from
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Energy resolution of gamma

is stopped):
on average we get

generated pairs

detectors

Depends on the statistical fluctuation in the number of generated
electron-hole pairs.

If all energy of the particle gets absorbed in the detector — E, (e.g.
gamma ray gets absorbed via photoeffect, and the photoelectron

gamma%

\photo-electrom

g~ 3.6eV for Si
~ 2.98 eV for Ge




4N _ FWHM
dH Resolution R = H
0

H

Figure 4.5 Definition of detector resolution. For peaks whose shape is
Gaussian with standard deviation o, the FWHM is given by 2.350.




N

If we have a large number of independent events with a small probability
(generation of electron-hole pairs) — binominal distribution — Poisson

Standard deviation — r.m.s. (root mean square):

o=1N.

l

The measured resolution is actually better than predicted by Poisson statistics

14



N

L/
# Reason: the generated pairs e-h are not really independent since there is

only a fixed amount of energy available (photoelectron looses all energy).
#® Photoelectron looses energy in two ways:
- pair generation (E; ~ 1.2 eV per pair in Si)
- excitation of the crystal (phonons) E, ~0.04 eV for Si

N, Average number of crystal excitations

N, Average number of generated pairs

o, =N, standard deviation

Since the available energy is fixed (monoenergetic photoelectrons):
EdN,=-EdN,=Eoc,=E.o,

o = i \/; Width of the energy loss distribution
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High resolution gamma detection

Potentially an even better resolution: cryogenic detector, deposited
energy is determined by measuring the change in superconductor
resistance through a measurement of magnetic flux by a SQUID.
Gap: of order meV - an order of magnitude better resolution
possible than in semiconductors — in principle. In practice
(inhomogenuity of response, electronics noise) comparable to

semiconductors.
5000 — —
Al T Mn
4000
v 3000
= ——99 eV
S 20001
1000 1
0 { 27 3 4 5 6
Fnergy [keV]

—> At E=5.9 keV: measured

o(E)/E = 150 / 2.35 / 5900
= 0.011

Comparison to a
semiconductor counter:

o(E)/E = (F W, /E)Y? =(0.12
X 3.6/5900)¥2 = 0.009

+ electronics noise etc

- measured

o(E)/E = 0.01-0.02



Detection of neutrons

In

orinciple similar to the low energy photon
detection: again let the neutron interact with
the detector medium, and detect charged
reaction products

Peter Krizan, Neutron and
neutrino detection



Detection of low energy n:
n+nucleus - charged fragments

Three conversion reactions commonly used in
detectors:

1B + n = 7Li* +a + 2.310 MeV

°Li+ n—=> 3H+ o + 4.78 MeV

3He + n = 3H + p + 0.764 MeV

Because the energy released in these reactions is large
compared to the energy of the detected neutron, and
the reaction products (which we later detect) carry
away this released energy, the information on the
neutron energy is lost.

Peter Krizan, Neutron and
neutrino detection



Detection of low energy n:
n+nucleus -> charged fragments

Cross—section (barns)
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Figure 14-1 Cross section versus neutron energy for some reactions of interest in neutron detection.



Slow neutron detection counters

The boron reaction is employed in BF; proportional tubes where boron
trifluoride is used as a proportional gas. The BF; gas is usually enriched
in 19B, and it has to be used at lower absolute pressures between 0.5
and 1.0 atm in order to get a good performance as a proportional gas.

i
anode I"Il_.Eu‘I.CII"I

| catheds A~ HY

L . —i—
| R % e I
) *He gas ! I'E}__.

1 FIFEEI'I'IF'

In a similar way, 3He is used as a conversion target and proportional gas
in the 3He proportional counter. Due to the lower energy released in
the 3He(n,p) reaction, the discrimination of gamma rays is more
difficult than with BF; counters, since secondary electrons only deposit

a small amount of energy in the gas.

Peter Krizan, Neutron and
neutrino detection



Slow neutrons (T<0.5eV): typical

dN

spectrum L —

such as gamma ray _
interactions, electronic Reaction product
noise, etc.) full—energy peaks

/ (excited state) (ground state)

i l

2.31 2.79 MeV

1B+ n > 7Li* +a + 2.310 MeV Devosites enery F —

(a)

aN
dE

“Wall effect”
continuum

SNV

0.84 1.47 2.31 2.79 MeV
Deposited energy £ —>

B——

(b)

Figure 14-3 Expected pulse height spectra from BF, tubes. (a) Spectrum from a large
tube in which all reaction products are fully absorbed. (b) Additional continuum due to
the wall effect.



Neutron detectors with Li

5Li is usually used in scintillators, e.g. lithium iodide,
which is chemically similar to sodium iodide. Due to
the density of enriched °LiI(Eu) crystals, a 10 mm
thick detector is almost 100% efficient for neutrons
ranging from thermal energies up to about 0.5 eV.

Lithium is also incorporated in scintillating glass
matrices. Lithium glass scintillators are used in time-
of-flight measurements due to their relatively fast
time response of less that 100 ns. This type of
detector, however, is more commonly used in the
detection of neutrons with intermediate energies.

Peter Krizan, Neutron and
neutrino detection



Neutrons with T around 1MeV

Cross section much lower than for thermal
neutrons — employ a moderator where
neutrons loose energy after elastic scattering
— most efficient if it has a large fraction of
hydrogen (e.g. organic compounds like
polyethylene and paraffin)

Peter Krizan, Neutron and
neutrino detection



Neutron detection: combination of
several methods

3He

BF;
moderator
shield

3He proportional counter Si detector

LI
BF3 proportional  Polyethylene  ~qmium

counters moderator shielding

Peter Krizan, Neutron and
neutrino detection



Discrimination against gamma rays

N

Some scintilators have two decay constants

dN/dt = A exp(-t/t,) + B exp(-t/,)

- In such scintilation materials the ratio of the two components depends on

In(dNy/dt)

jEa=s

In(dN/dt

»
>

the particle type since the light yield of the two components depends on

dE/dx, which, in turn, depends on the particle type.
9

v
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Stilbane Fig. 7.11. Pulse shape of stilbene light for alpha particles,
neutrons, and gamma rays (from Lynch [7.71]; picture ©
103 1975 IEEE)
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Fig. 7.12. Pulse shape differences of NE 213 liguid scintillator light for neutrons and gamma rays. The time
integral of the light pulses is also shown. A discrimination between these radiations may be obtained by
measuring the time it takes for the integrated pulse to reach a certain fixed level (from Lynch [7.17]; picture

© 1975 1EEE)



Medium energy neutrons (=fast n)

For neutrons of even higher energies (20MeV<T<1GeV) the use of
a moderator is unpractical, furthermore, moderator based
detectors are slow and cannot be used for time measurements.

The most common method to detect fast neutrons is based on
elastic scattering of neutrons on light nuclei, resulting in a recoil
nucleus. This is also the principle of proton recoil scintillators.
Fast neutrons incident on a hydrogen-containing scintillator will
scatter elastically and give rise to recoil protons ranging in
energy up to the full neutron energy. The energy of the recoil
protons is then deposited in the scintillator and converted to
fluorescence.

A large variety of hydrogen-containing scintillators is available:
organic crystals (anthracene, stilbene), liquid scintillators
(organic scintillators in an organic solvent), and plastic
scintillators (organic scintillators in a polymerized hydrocarbon)

Peter Krizan, Neutron and
neutrino detection



High energy neutrons

For neutrons with several GeV energy: hadron
calorimeters - lecture ‘Energy measurements’

Peter Krizan, Neutron and
neutrino detection



Neutrino detection

Use inverse beta decay
Vot N2 p+ €
Vet P2 n+ef
v+ N > p+Ww
v,+p 2> n+put
vtn—> p+ T

v+tp—=2>n+r1*

However: cross section
is very small!

6.4 10% cm? at 1MeV

Probability for
interaction in 100m of
water = 4 1016

Peter Krizan, Neutron and

neutrino detection



Neutrino detection - history

N

Vet P2 N+ et
et+e 2 vy
n+Cd->Cd*>Cd + vy
Reines-Cowan experiment

Vb N 2P+

vt 3Cl 2 37Ar* + e
37TAr¥—=> 3/Ar + v

Davies experiment




Electron neutrino detected in a bubble chamber

Electron neutrino produces
an electron, which then
starts a shower. Tracks
of the shower are curved
in the magnetic field.

Peter Krizan, Neutron and ﬁ Vv
neutrino detection e



Which type of neutrino?

Identify the reaction product, e,u,t, and its charge.
Water detectors (e.g. Superkamiokande)
muon: a sharp Cherenkov ring

electron: Cherenkov ring is blurred (e.m. shower
development)

tau: decays almost immediately — after a few hundred
microns to one or three charged particles

Peter Krizan, Neutron and
neutrino detection



High energy neutrinos

Interaction cross section:
Neutrinos:

0.67 1038 E/1GeV cm? per nucleon
Antineutrinos:

0.34 1038 E/1GeV cm? per nucleon

At 100 GeV, still 11 orders below
the proton-proton cross section

Peter Krizan, Neutron and
neutrino detection



Superkamiokande: an example of a neutrino detector

SUPERFOARSMECAMNDE  renmar: Fronan Rey RESTAscH A HRSRETY 6F TR RN S

Peter Krizan, Neutron and
neutrino detection



Superkamiokande: an example of a neutrino detector




Superkamiokande: detection of Cherenkov photons

Light sensors: HUGE
photomultipler tubes

Peter Krizan, Neutron and

M. Koshiba neutrino detection



Superkamiokande: an example of a neutrino detector

Kamiokande Detector ("Kamioka Nucleon Decay Experiment”):
1000 8” PMTs in 4500-tonne pure water target

Limits on proton decay,
First detection of neutrinos from supernova,
11 events from SN in Large Magellanic Cloud, Feb 23, 1987

Super-Kamiokande Detector
11000 20" + 1900 8” PMTs in 50000-tonne pure water target

Operation since 1996, measurements of neutrino oscillations
via up down asymmetry in atmospheric v rate
Solar v flux (all types) 45% of that expected

Accident November 2001: loss of 5000 20” PMTs, now replaced

Peter Krizan, Neutron and
neutrino detection



Superkamiokande: detection of electrons and muons

How to detect muons or electrons? Again through
Cherenkov radiation, this time in the water container.
Neutrino turns into an electron or muon.

Muons and electrons emit Cherekov photons
- ring at the container wals

eMuon ring: sharp edges
eElectron ring: blurred image (bremstrahlung)



Muon vs electron
Cherenkov photons from a

muon track:

Example: 1GeV muon neutrino

Track length of the resulting
muon: L=E/(dE/dx)=
=1GeV/(2MeV/cm)=5m

- a well defined “ring” on the
walls

f

———

Peter Krizan, Neutron and

neutrino detection



Superkamiokande: muon event

Muon ‘ring” as seen by the
photon detectors

Peter Krizan, Neutron and
neutrino detection



Muon event: photon detector cillinder walls
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Cherenkov photons from an electron track

Electron starts a shower!

Cherenkov photons from an
electron generated shower

Example: 1GeV el. neutrino JINSE el s
Shower length: ]\ “““““ S
L=X*10g,(E/E i) = ;’i‘f ;:f:i i
36cm*log,(1GeV/10MeV) S
=2.5m st oL
" . !

Shower particles are not parallel ||
to each other !

-> a blurred, less well defined S
“ring” on the walls

Peter Krizan, Neutron and
neutrino detection



Electron event: blurred ring
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Detection of T neutrinos

v.tnN2p+T

Peter Krizan, Neutron and
neutrino detection




N

Detection of t neutrinos 2

L

¢ Detect and identifiy mion

+ Extrapolate back

¢ Check for a 'kink” in the sensitive volume —

e.g. a thick photographic emulsion

Peter Krizan, Neutron and
neutrino detection

e
-
-
g
.
e
. 22
. L 4
g
g
-
22
AS
22




Detection of t neutrinos 3

N

Separate signal decay from
the direct muon production

Peter Krizan, Neutron and
neutrino detection




Detection of T neutrinos: OPERA

Alessandria
Emilia-Romagna
Monte-Maggiorasca
Monte-Prato
Monte-Giovo

Piemonte

=3
754
&
f3ed
o
=
o
(O]
=
=
B
e

Detection unit: a brick with 56 Pb
sheets (1mm) + 57 emulsion films

155000 bricks, detector total mass = 1.35 kton




Detection of very high energy neutrinos (from
galactic sources)

The expected fluxes are very low:
Need really huge volumes of detector medium!
What is huge? From (100m)3 to (1km)3

Also needed: directional information.
Again use: v, + N -> p + u’; u direction coincides with

the direction of the high energy neutrino.

Peter Krizan, Neutron and
neutrino detection



AMANDA: use the Antarctic ice instead of water

Normal ice is not transparent
due to Rayleigh scattering
on inhomogenuities (air
bubbles)

At high pressures (large depth)
there is a phase transition,

bubbles get partly filled with L
water-> transparent!

Originally assumed: below
800m OK; turned out to be
much deeper.

KABLI—

. il
FOTOPOMNOZEVALKE

Peter Krizan, Neutron and
neutrino detection
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2000 AMANDAII ~ 700 Optical Mod
2010 ICECUBE 4800 Optlcal Modulés

AMANDA

’_———~

e Amundsen-Scott South Pole station
Y2000 m
Q\otto scale]



Reconstruction of direction and energy of incident high
energy muon netrino

For each event: M%{’*
Measure time of arrival on each \\ FOTOPOMNOZEVALKA
of the tubes \
Cherenkov angle is known: \ < KABLI
cos0=1/n \
Reconstruct muon track \:?@
Track direction -> neutrino
direction 6-&
Track length -> neutrino energy
\
3,
\
\

Peter Krizan, Neutron and
neutrino detection



AMANDA

Example of a detected
event, a muon
entering the PMT
array from below

Peter Krizan, Neutron and
neutrino detection



Neutrino detection arrays in water

Similar geometry can be used in a water based detector deep below
the sea surface (say around 4000m)

- ANTARES (Marseille)

- Nestor (Pylos, SW Pelophonysos)

- Lake Baikal

-  DUMAND (Hawaii) - stoped

Problems: bioluminescence, currents, waves (during repair works)
Lake Baikal: deployment, repair works: in winter, from the ice cover

Peter Krizan, Neutron and
neutrino detection



NEUTRINO TELESCOPE NT-200

To shore

Calibration laser
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Generic Optical Module Components

{Sfrom AN

LED Pu

:
y

TARES

Glass Pressure Sphere

ptical coupling &
(almost) index-
matching gel

=
=

5
L

antom F'.ffll:ienc}-
' &

|

]

Ju

L.++(Sphere)

Acti

B .z";l
Yoo

400 510 £
A (om)

201 550 EAM)
2 (nm)

==

L,(Gel): cm

n i i
i)

44 00 A
A {nm)

(Cock

Efficiency:(quantum & collection)>16%o;



Region of sky observable
by Neutrino Telescopes

AMANDA (South Pole) ANTARES (43° North)

4 Mkn 421
" Mknf501
+

O
|

" SS33 | CX3394 NELS

Galactic
Centre -




Next generation neutrino telescopes

Go for 1 km? detector volume!
#®Ice cube
®#KM3

Peter Krizan, Neutron and
neutrino detection
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WORK PACKAGES

KM3NeT: EU FP6 Design Study

Participants: 8 countries, 34 institutes (ANTARES+NESTOR+NEMO+...)

- I ——=] ]

Physics Analysis

Shore and deep-sea
structure

Risk Assessment
Quality Assurance

Resource Exploration

Peter Krizan, Neutron and
neutrino detection
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NeT: Site Choice?

68°W 4°W 2°W 0°E 2°E 4°E 6°E 8°E 10°E 12°E 14°E 16°E 18°E 20°E 22°E 24°E 26°E 28°E 30°E 32°E 34°E 36°E 38°E 40°E 42°

T —

-3900 m -2600 m -1300 m 1300 m 2600 m 3900 m

Peter Krizan, Neutron and
neutiino detection
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Additional slides

Peter Krizan, Neutron and
neutrino detection




Detection of low energy neutrinos (from sun)

/
\V

Solution to solar neutrino problem;
Why is the v, flux at the earth’s surface (e.g. Homestake)
~ 1/3 that expected from models of solar v, production?
Do v's oscillate:
change flavour =»v,
-)vlLl
V.

Peter Krizan, Neutron and
neutrino detection
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Sudbury Neutrino Observatory

L

Due to presence of D,0,
SNO detector sensitive to
all 3 neutrino flavours:

v Reactions in SNO

-Good measurement of v_ energy spectrum
-Weak directional sensitivity «« 1-1/3cos(8)

- v, only.

- Equal cross section for all v types

n captured by another deuteron = y scatters e 9 C light

Pete @ vy te = v, e — Clight
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