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Motivation,

Probability spaces,

Conditional probabilities,

Random variables,

Probability distributions,

Transformations of probability distributions,
Conditional distributions,

Parametric families of (direct) probability distributions,
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The Central limit Theorem,
10.Invariant parametric families.
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Theorem 2 (CLT, Lévy). Consider i.i.d. Xy,..., X, with(x) =(x;) and
Var(x) =Var(x;) <o.Then,
. Var(x) | _ 1<
limX, ~ N| (x), , Xg=— ) X .
n—o0 n [< > n j nZ|:1
s’ E—l Zn:(x —X)?
U] - [ n
Proposition. Consideri.i.d.{X,,..., X }, and suppose that (x), {x*),
(x*), (x*) all exist and are finite. Then,
(s’) =Var(x).
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Pr bab|I|ty Distributions:

“In order to make the theory operational, we must introduce a concept
of probability that links the mathematics to an external world of measu-
rable phenomena.” (A. Stuart, J. K. Ord (1994), § 8.8, p. 290.)
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“The most striking achievement of the physical sciences is prediction.”
(G. Polya (1954), Chap. X1V, 8 4, p. 64.)
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“The pure mathematician can do what he pleases, but the applied
mathematician must be at least partially sane.” (M. Kline (1980).
Mathematics: The Loss of Certainty, Chap XIII, p. 285)
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Example,
Binary random sequence,

Random sequence of real numbers,

= W N =

Monte Carlo methods.
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A HA = Do
. paradox). "o
A straw Is tossed at random so that the line determined by the straw
intersects the unit circle. What is the expected length (l) of the chord
thus defined?
J.L. Bertrand (1889), Calcul des Probilites, pp. 4-5.
J.B. Paris (1994), The Uncertain’s Reasoner Companion, Chap. 6,
pp. 71-72.
E.T. Jaynes (2003), Probability Theory, § 12.4.4, pp. 386-394.
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Consider an infinite binary sequence 1,0,1,1,0,1,0,0,0,1,0,1,1,0,1,...

with equal relative frequencies of appearance of 1's and 0’s,

1
]/1 = VO = E ,
or more precisely,
lim P(ﬁ—l < g] -1,
n—o0 n 2

We say that v,=v,=1/2 is true almost everywhere with respect to
the Bernoulli measure Bn(1/2) on the space of infinite binary
sequences, called Cantor space (Bn(1/2) on the Cantor space
IS Isomorphic to the Lebesgue measure on the interval [0,1]).
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For a Bn(1/2) -typical binary sequence we would further expect that

s
4 ]

Viig=Vio = Vo1 =Voo =

1

Viia =Vo11 = V101 = V110 = Y001 = Yo10 = V100 = Y000 = g ,

holds Bn(1/2)-almost everywhere.

That is, from a Bn(1/2) -typical binary sequence we would naively
expect to satisfy all properties true Bn(1/2)-almost everywhere.
Unfortunately, such a definition is vacuous.
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Definition 1 (Bn(1/2)- random binary sequence). An infinite binary
sequence is called (Martin-L6f) Bn(1/2)- random iff it is not rejected
by the Martin-Lof test (i.e., if it satisfies a (special) countable
sequence of properties true Bn(1/2)-almost everywhere).

P. Martin-Lof (1966), Inform. Control 9, 602-619.

The limiting frequencies v, and v, need not be the same, e.g., v,=2/3
and v,=1/3.

Definition 2 (Bn(v,)- random binary sequence). An infinite binary
sequence is called (Martin-L6f) Bn(v,)- random iff it is not rejected
by the Martin-Lof test (i.e., if it satisfies a countable
sequence of properties true Bn(v,)-almost everywhere).

Remark 1. No finite binary sequence is random.

4/15/2010
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3. Real random sequences.

N Given a probability space (R",B",Pry), a set AeB"
R and an infinite sequence X;,X,,..., (X; eR") give
rise to a binary sequence b,,b,,..., where

b _ 1;x, €A
] 0: otherwise

Definition 3 (Pry-random sequence). Given a probability space
(R",B",Pry), an infinite sequence Xy,X,,..., (X; €R") is Pry-random iff for
every AeB" the corresponding binary sequence by,b,,... is Bn[Pry(A)]-
random.

In this way, the probability distribution Pry, on B" coincides with the
(frequency) distribution of the sequence x,,X,,..., which is characteristic
of the frequency interpretation of probability.

4/15/2010 12
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Remark 2. Every finite sequence is non-random. Consequently, the ran-
domness of QM cannot be verified, it can only be postulated.

Remark 3. Every (possibly infinite) sequence that results from an algo-
rithm is non-random. Consequently, none of the numbers from
random number generators, based on algorithms, is truly random.
Rather, they are pseudo-random numbers.

There are random number generators based on QM processes
such as, for example, radioactive decays. The numbers from these
generators may be (parts of) truly random sequences.

4/15/2010 13
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Solution If Fy(X) simple (analytic) expression (e.g., for Exponential distr.):
1;0<y<1
=F(X)=> f = ;
y=F ()= 1) {O;otherwise
1.y, =rndm, (100% efficiency)

2. X = Fx_l(Yi)

Solutions for Normal distributions: [Ty (X Y) =T, (N, (Y) = fro(r, @) = fo(r) fo(4);

1
a) sum of n uniform i.i.d. variables, | ¢4 _{?0<¢< 2% (1) =rexp{-r*/2}:

27
b) 2D Normal distribution........: =1 0 ;otherwise
= F.(r) =1—exp{-r?/2},r>0;= z = F.(r)

1:.0<z<1
= fz,®(21¢) - fz(z) fq>(¢) ; fz(z) = {O'otherwise .

4/15/2010 17
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Motivation,

Construction,

Intervals based on likelihood-ratio ordering,
Intervals for constrained parameters,
Confidence intervals for discrete distributions,
On the shortest confidence intervals.
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Example 1 (Prolog): given t;, can we say anything about 7 ?

The parameter 7 may take on every value in a continuum
R*— a measure of a single point in the continuum is 0.

For verifiable predictions we must turn to interval estimations.
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: Dachiy] 5 re(0)
| ) 7, 6) t,; 7, true value
) I iRt ]n)=a 7) nelnn)ote(t,.t)

A

Remark 4. F(t|%)=a

Fu(tl|Ta)=a+y}:>7/:Fl(t1|7a)—|:.(t1|rb).
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3. Confidence intervals based on likelihood-ratio ordering.

G.J. Feldman, R.D. Cousins (1998), Phys. Rev. D 57, 3873-3889.
May be regarded as a definition of c(z ) (0f a(@)).
Given #:R(x,0)=- b, x=X:f (x]8)=max.,

(X16)°
={x eV, :R(x,0)>R,and Pr, (A|8)=y}.

f
A= (Xa’xb)

~

The rest of the procedure is identical to the one on the previous slide.

Remark 6. These confidence intervals are equivariant under ono - to -
one reparametrizations y = s(x)andv =5(9):

(Va[sOD1 v [(x,)1) = (516, (x)1,5[6,(x,)]).-

4/15/2010 2k
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6. On the shortest confidence intervals.

Example 4 (Exponential family): Givent, chose « = const. such that
the lenght of the confidence interval (z,, 7, ) will be minimal.
For y =0.2: a =0.740976 = (z,, 7, ) = (0.353t,,0.740t, )

Note: (,, 7, ) does not contain 7 = t,, but contains t, / 2.

Example 4 (cont'd): x=Inx,u=Int= f.(x|u)=¢* '“E'Xp{ ex_'“}.
Fory:O.Z.a:O.527573 (,ua,,ub) Int, —0.263,Int, +0.288).

Note: (u,,14,)# (Inz,,Inz, ).

4/15/2010 25
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Example 5 (Hypothesis testing): H :z =1r,. H rejected at
confidence (significance) level y if 7, Is outside the

shortest confidence interval (z,, 7, ) whose coverageis y.

The choice of parametrization depends on what you
want, accept or reject H (ideology!).
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Basic definitions,
Errors of the first and the second kind,
Neyman-Pearson Lemma,

s W N =

Uniformly most powerful tests.

|
i

TI:il\‘i_ '
AT

\

.\; W

Rt
\
\

s

)

i A .Il;l_""._:_".

\
! 'h.l

[k
\ i LR

AN



e
1. Basic definitions.

H. Frank, S.C. Althoen (1994), Statistics, Chaps. 9-11, pp. 326-480.

Inference : whatis the value of parameter 6?
Test of ahypothesis:is 6, the value of parameter 6?

Test (null) hypothesis H,: 6 =6,
Alternative hypothesis H,: =6, (6, # 6,) or 6 > 6,.

TestW :anumericalindex that is expected to take the value w, If
H, is correct andis expected some other value if H, Is correct.
Test statisticW :W =W (X, X, ...).

4/15/2010 28
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Rejection (critical)region R. : the region of the values of a test W that
are unlikely (??) if H, is correct but relatively likely (??)if H, is
correct.

Critical value (significancelevel,sizeof R.): a=Pr,(R. | 6,).

ConfidencelevelCl=1-«.

Decision:if we R. abandon H, in favor of H, at confidence level Cl;
If we R, H, isrejected.

\

\
. "\":1'\."'"

A\ |

)
AN
)

i ﬁ,ﬂ
Y

TRy

\

29

% A

I \ ., i'
1

!
1.
Y
A\
\

i

o ©



| 1ann

A |
.I X lik"l.
L\

A AR
TSN

'&.--I 3

b TR

1 ?\ ::' |
ARERA

e

=
o

5

cond kind.
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Error | (false positive):rejecting H, whenitis correct.
Error Il (false negative):rejecting H, whenitis correct
(.e., fail toreject H, whenitis indeed false).

a = P(Error 1), g =P(Error 11).

Power of the test:1- £ (probability that a test will reject
afalse H,).
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Abest R, of size a: P(R. |H, )= P(R. IH) P(Q. |H,)
for all Q. for which P(Q, |H,)=«

Lemmal(Neyman-Pearson).H,:0=6,,H,:0=6,,
L(X,,-. X, 6)

)= L(Xpsoe X3 6)

Re = {(X,.... %) W (X,....X.;6,,6,) <}

— R, is a best critical region of size ¢, i.e.,
W (X,,...,X,;6,,6,)isamost powerful test

of size a = P(R; | H,).

W(X,,...,X,;6,,6

K
@ ¢
o ©

31



unfi|ififimn -_ d,,u—,_.g_--_,..ﬂ-"'_’
i —
Hest:_i. Z

Uniformly most powerful test of size «.
H,:0=6,,H,:0€ A (6,¢ A,
W (X,,...,X,;6,,6,)most powerfull for all 6, € A

1 \na

=W (X,,..., X ;6,,6,)is auniformly most powerful

1 \ny

test of size « for alternativesin A.

e

Example 6 (UMPT for Normal distr.): {X,,..., X }i.i.d., X; ~ N (1),

”L(XP Xn’/uo)
L(Xy,. .00 Xo3 £4)

Ho:pu=py, H > 1y = DL > Ly, ISUMPT.

Example 7: ThereisnoUMPT Iif H, @y = 1y, Hy T 1t # 4.
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