Statistical methods

Tomaž Podobnik Oddelek za fiziko, FMF, UNI-LJ Odsek za eksperimentalno fiziko delcev, IJS

Contents:

- I. Prologue,
- II. Mathematical Preliminaries,
- III. Frequency Interpretation of Probability Distributions,
- IV. Confidence Intervals,
- V. Testing of Hypotheses,
- VI. Inverse Probability Distributions,
- VII. Interpretation of Inverse Probability Distributions,
- **VIII.Time Series and Dynamical Models.**

II. Mathematical Preliminaries:

- 1. Motivation,
- 2. Probability spaces,
- 3. Conditional probabilities,
- 4. Random variables,
- 5. Probability distributions,
- 6. Transformations of probability distributions,
- 7. Conditional distributions,
- 8. Parametric families of (direct) probability distributions,
- 9. The Central limit Theorem,
- 10.Invariant parametric families.

Theorem 2 (CLT, Lévy). Consider i.i.d. $X_1,...,X_n$ with $\langle x \rangle = \langle x_i \rangle$ and $Var(x) = Var(x_i) < \infty$. Then,

$$\lim_{n\to\infty} \overline{x}_n \sim N\left(\langle x \rangle, \sqrt{\frac{Var(x)}{n}}\right), \ \overline{x}_n \equiv \frac{1}{n} \sum_{i=1}^n x_i \ .$$

$$s_n^2 \equiv \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$$

Proposition. Consider i.i.d. $\{X_1, ..., X_n\}$, and suppose that $\langle x \rangle, \langle x^2 \rangle$, $\langle x^3 \rangle, \langle x^4 \rangle$ all exist and are finite. Then,

$$\langle s_n^2 \rangle = Var(x)$$
.

III. Frequency Interpretation of Probability Distributions:

"In order to make the theory operational, we must introduce a concept of probability that links the mathematics to an external world of measurable phenomena." (A. Stuart, J. K. Ord (1994), § 8.8, p. 290.)

"The most striking achievement of the physical sciences is prediction." (G. Pólya (1954), Chap. XIV, § 4, p. 64.)

"The pure mathematician can do what he pleases, but the applied mathematician must be at least partially sane." (M. Kline (1980). *Mathematics: The Loss of Certainty,* Chap. XIII, p. 285.)

4/15/2010

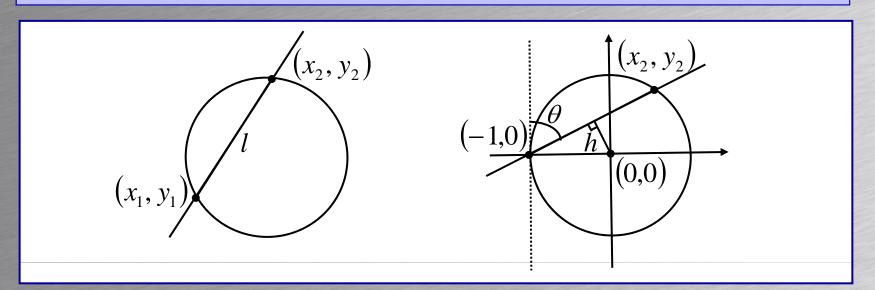
III. Frequency Interpretation of Probability Distributions:

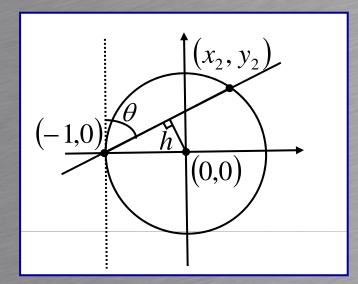
- 1. Example,
- 2. Binary random sequence,
- 3. Random sequence of real numbers,
- 4. Monte Carlo methods.

1. Example 1. (Bertrand's paradox).

A straw is tossed at random so that the line determined by the straw intersects the unit circle. What is the expected length $\langle l \rangle$ of the chord thus defined?

- J.L. Bertrand (1889), Calcul des Probilités, pp. 4-5.
- J.B. Paris (1994), *The Uncertain's Reasoner Companion*, Chap. 6, pp. 71-72.
- E.T. Jaynes (2003), *Probability Theory,* § 12.4.4, pp. 386-394.





a)
$$f(h) = \begin{cases} 1; 0 \le h \le 1 \\ 0; \text{ otherwise} \end{cases} \Rightarrow \langle l \rangle = \frac{\pi}{2} \approx 1.57;$$

b)
$$f(\theta) = \begin{cases} \frac{2}{\pi}; 0 \le \theta \le \frac{\pi}{2} \\ 0; \text{ otherwise} \end{cases} \Rightarrow \langle l \rangle = \frac{4}{\pi} \approx 1.27;$$

c)
$$f(x_2) = \begin{cases} \frac{1}{2}; -1 \le x_2 \le 1 \\ 0; \text{ otherwise} \end{cases} \Rightarrow \langle l \rangle = \frac{4}{3} \approx 1.33.$$

2. Binary random sequences.

Consider an **infinite** binary sequence 1,0,1,1,0,1,0,0,0,1,0,1,1,0,1,... with equal relative frequencies of appearance of 1's and 0's,

$$v_1 = v_0 = \frac{1}{2}$$
;

or more precisely,

$$\lim_{n\to\infty} P\left(\left|\frac{n_1}{n}-\frac{1}{2}\right|<\varepsilon\right)=1.$$

We say that $v_1=v_0=1/2$ is true almost everywhere with respect to the Bernoulli measure Bn(1/2) on the space of infinite binary sequences, called Cantor space (Bn(1/2)) on the Cantor space is isomorphic to the Lebesgue measure on the interval [0,1]).

For a Bn(1/2) -typical binary sequence we would further expect that

$$\nu_{1,1} = \nu_{1,0} = \nu_{0,1} = \nu_{0,0} = \frac{1}{4},$$

$$\nu_{1,1,1} = \nu_{0,1,1} = \nu_{1,0,1} = \nu_{1,1,0} = \nu_{0,0,1} = \nu_{0,1,0} = \nu_{1,0,0} = \nu_{0,0,0} = \frac{1}{8},$$
:

holds Bn(1/2)-almost everywhere.

That is, from a Bn(1/2) -typical binary sequence we would naively expect to satisfy all properties true Bn(1/2)-almost everywhere. Unfortunately, such a definition is vacuous.

Definition 1 (Bn(1/2)- random binary sequence). An infinite binary sequence is called (Martin-Löf) Bn(1/2)- random iff it is not rejected by the Martin-Löf test (i.e., if it satisfies a (special) countable sequence of properties true Bn(1/2)-almost everywhere).

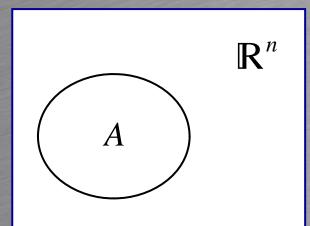
P. Martin-Löf (1966), Inform. Control **9**, 602-619.

The limiting frequencies v_1 and v_0 need not be the same, e.g., v_1 =2/3 and v_0 =1/3.

Definition 2 ($Bn(v_1)$ - random binary sequence). An infinite binary sequence is called (Martin-Löf) $Bn(v_1)$ - random iff it is not rejected by the Martin-Löf test (i.e., if it satisfies a countable sequence of properties true $Bn(v_1)$ -almost everywhere).

Remark 1. No finite binary sequence is random.

3. Real random sequences.



Given a probability space $(\mathbb{R}^n, \mathbb{B}^n, \operatorname{Pr}_{\mathbf{X}})$, a set $A \in \mathbb{B}^n$ and an infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots, (\mathbf{x}_i \in \mathbb{R}^n)$ give rise to a binary sequence $\mathbf{b}_1, \mathbf{b}_2, \ldots$, where

$$b_i = \begin{cases} 1; \mathbf{x}_i \in A \\ 0; \text{otherwise} \end{cases}.$$

Definition 3 (Pr_X**-random sequence).** Given a probability space $(\mathbb{R}^n, \mathbb{B}^n, \operatorname{Pr}_X)$, an infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots, (\mathbf{x}_i \in \mathbb{R}^n)$ is Pr_X -random iff for every $A \in \mathbb{B}^n$ the corresponding binary sequence $\mathbf{b}_1, \mathbf{b}_2, \ldots$ is $Bn[\operatorname{Pr}_X(A)]$ -random.

In this way, the probability distribution $Pr_{\mathbf{X}}$ on \mathfrak{B}^n coincides with the (frequency) distribution of the sequence $\mathbf{x}_1, \mathbf{x}_2, ...$, which is characteristic of the frequency interpretation of probability.

Remark 2. Every finite sequence is **non**-random. Consequently, the randomness of QM cannot be verified, it can only be postulated.

Remark 3. Every (possibly infinite) sequence that results from an algorithm is **non**-random. Consequently, none of the numbers from random number generators, based on algorithms, is truly random. Rather, they are pseudo-random numbers.

There are random number generators based on QM processes such as, for example, radioactive decays. The numbers from these generators may be (parts of) truly random sequences.

4/15/2010

4. Monte Carlo methods.

Basis: Generator of (pseudo-) random numbers, uniformly distributed on an interval, often [0,1].

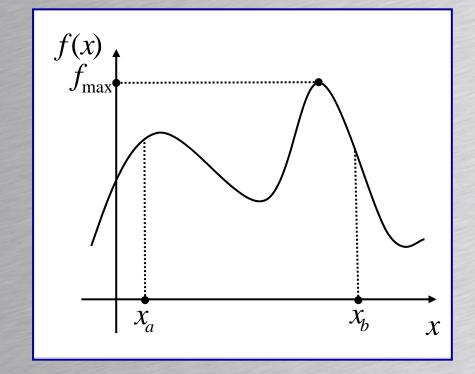
MC integration:

$$1. x_i = x_a + \text{rndm}_i \times (x_b - x_a)$$

2.
$$y_i = \text{rndm'}_i \times f_{\text{max}}$$

3.
$$y_i \le f(x_i) \Longrightarrow N_{\text{acc}} = N_{\text{acc}} + 1$$

$$\int_{x_a}^{x_b} f(x) dx = \frac{N_{\text{acc}}}{N_{\text{gen}}} \times (x_b - x_a) \times f_{\text{max}}$$



(Pseudo-) Random numbers for arbitrary $f_X(x)$:

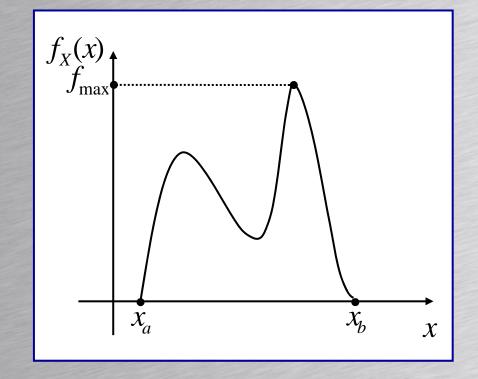
$$V_X = [x_a, x_b]$$

1.
$$x_i = x_a + \text{rndm}_i \times (x_b - x_a)$$

2.
$$y_i = \text{rndm'}_i \times f_{\text{max}}$$

3.
$$y_i \le f_X(x_i) \Longrightarrow \text{accept } x_i$$

accepted
$$\{x_i\} \sim f_X(x)$$



Low efficiencies may represent a serious problem:

$$V_X = [x_a, x_b]$$

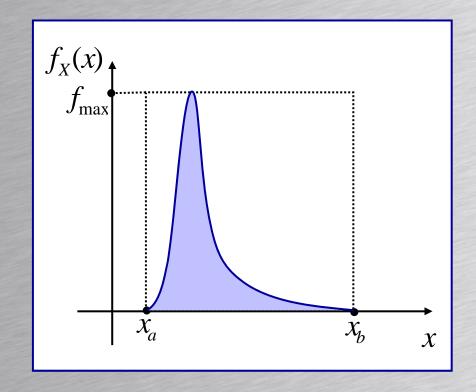
1.
$$x_i = x_a + \text{rndm}_i \times (x_b - x_a)$$

2.
$$y_i = \text{rndm'}_i \times f_{\text{max}}$$

3.
$$y_i \le f_X(x_i) \Longrightarrow \text{accept } x_i$$

$$S_{\text{rec}} = [x_a, x_b] \times f_{\text{max}}$$

$$\frac{N_{\rm acc}}{N_{\rm gen}} = \frac{S_{\rm shad}}{S_{\rm rec}}$$



Solution if $F_X(x)$ simple (analytic) expression (e.g., for Exponential distr.):

$$y \equiv F_X(x) \Rightarrow f_Y(y) = \begin{cases} 1; 0 \le y \le 1 \\ 0; \text{ otherwise} \end{cases}$$

1. $y_i = \text{rndm}_i$ (100% efficiency)

2.
$$x_i = F_X^{-1}(y_i)$$

Solutions for Normal distributions:

- b) 2D Normal distribution....: ⇒{

$$\left(f_{X,Y}(x,y) = f_Y(y)f_Y(y) \Longrightarrow f_{R,\Phi}(r,\phi) = f_R(r)f_\Phi(\phi);\right)$$

a) sum of
$$n$$
 uniform i.i.d. variables, $f(\phi) = \begin{cases} \frac{1}{2\pi}; 0 \le \phi \le 2\pi \\ 0; \text{ otherwise} \end{cases}$, $f_R(r) = r \exp\{-r^2/2\};$

$$\Rightarrow F_R(r) = 1 - \exp\{-r^2/2\}, r \ge 0 ; \Rightarrow z \equiv F_R(r)$$

$$\Rightarrow f_{Z,\Phi}(z,\phi) = f_Z(z)f_{\Phi}(\phi); f_Z(z) = \begin{cases} 1; 0 \le z \le 1 \\ 0; \text{otherwise} \end{cases}$$

IV. (Classical) Confidence Intervals:

- 1. Motivation,
- 2. Construction,
- 3. Intervals based on likelihood-ratio ordering,
- 4. Intervals for constrained parameters,
- 5. Confidence intervals for discrete distributions,
- 6. On the shortest confidence intervals.

1. Motivation.

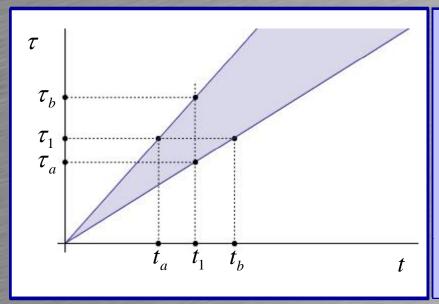
Example 1 (Prolog): given t_1 , can we say anything about τ ?

The parameter τ may take on every value in a continuum $\mathbb{R}^+ \Longrightarrow$ a measure of a single point in the continuum is 0.

For verifiable predictions we must turn to interval estimations.

J. Neyman (1937). Phil. Trans. R. Soc., A 236, 333-380.

2. Construction.



1)
$$\alpha \in [0, 1-\gamma]$$
 5) $\tau \in (0, \infty)$

$$5) \ \tau \in (0, \infty)$$

$$2) \tau_1$$

$$3) t_a: F_I(t_a \mid \tau_1) = \alpha$$

2) τ_1 6) t_1 ; τ_1 true value 3) t_a : $F_I(t_a \mid \tau_1) = \alpha$ 7) $\tau_1 \in (\tau_a, \tau_b) \Leftrightarrow t_1 \in (t_a, t_b)$

4)
$$t_b: F_I(t_b \mid \tau_1) = \alpha + \gamma$$

$$\Rightarrow \Pr_{I}(t_{a} < t \le t_{b} \mid \tau)$$

$$= F_I(t_b \mid \tau_1) - F_I(t_a \mid \tau_1)$$

$$=\gamma$$

Remark 4.
$$F_I(t_1 \mid \tau_b) = \alpha$$

 $F_I(t_1 \mid \tau_a) = \alpha + \gamma$ $\Rightarrow \gamma = F_I(t_1 \mid \tau_a) - F_I(t_1 \mid \tau_b)$.

Remark 5. $\alpha = \alpha(\tau)$, as long as $t_a(\tau)$ and $t_b(\tau)$ strictly monotone in τ .

3. Confidence intervals based on likelihood-ratio ordering.

G.J. Feldman, R.D. Cousins (1998), Phys. Rev. **D** 57, 3873-3889.

May be regarded as a definition of $\alpha(\tau)$ (of $\alpha(\theta)$).

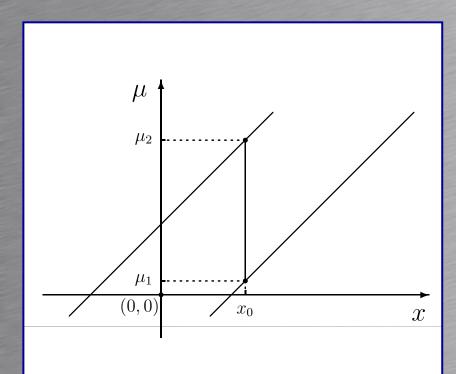
Given
$$\theta$$
: $R(x,\theta) \equiv \frac{f_I(x \mid \theta)}{f_I(\hat{x} \mid \theta)}$; $x = \hat{x}$: $f_I(x \mid \theta) = \max$.,
 $A = (x_a, x_b) = \{x \in V_X : R(x,\theta) \ge R_0 \text{ and } \Pr_X(A \mid \theta) = \gamma\}$.

The rest of the procedure is identical to the one on the previous slide.

Remark 6. These confidence intervals are equivariant under ono - to - one reparametrizations $y \equiv s(x)$ and $v \equiv \bar{s}(\theta)$:

$$(v_a[s(x_1)], v_b[s(x_1)]) = (\overline{s}[\theta_a(x_1)], \overline{s}[\theta_b(x_1)]).$$

Example 2. Confidence intervals for $x \sim N(\mu, \sigma = 1)$:



$$\gamma = 0.9$$

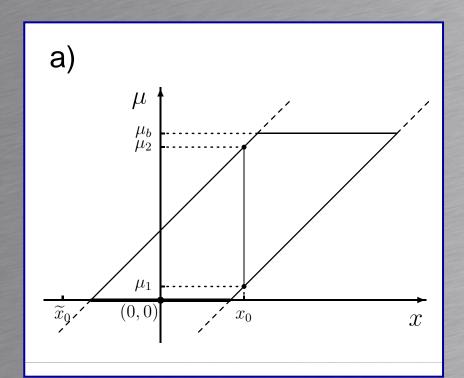
- a) $\alpha = 0.05 = \text{const.},$
- b) intervals from the likelihood ratio ordering principle.

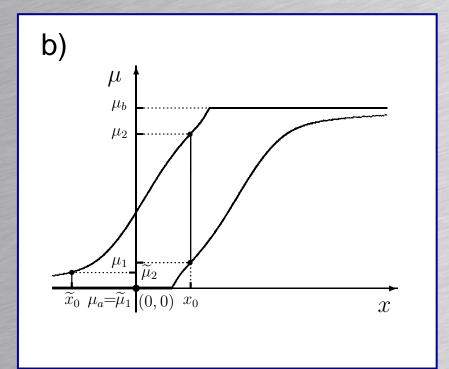
Important because of CLT:

$$n \to \infty : \overline{x}_n \sim N\left(\langle x \rangle, \sqrt{\frac{Var(x)}{n}}\right) \approx N\left(\langle x \rangle, \sqrt{\frac{s_n^2}{n}}\right)$$

4. Intervals for constrained parameters.

Example 3. Confidence intervals for $x \sim N(0 \le \mu \le 3.92, \sigma = 1)$:





5. Confidence intervals for discrete distributions.

For discrete $F_I(n \mid \mu)$, equations $F_I(n_a \mid \mu) = \alpha$, $F_I(n_b \mid \mu) = \alpha + \gamma$ do not have solutions for all μ .

Construct the shortest CI's whose coverage $\geq \gamma$ (conservative CI's).

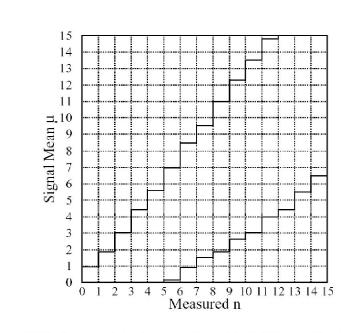


FIG. 7. Confidence belt based on our ordering principle, for 90% C.L. confidence intervals for unknown Poisson signal mean μ in the presence of Poisson background with known mean b=3.0.

6. On the shortest confidence intervals.

Example 4 (Exponential family): Given t_1 , chose $\alpha = \text{const.}$ such that the length of the confidence interval (τ_a, τ_b) will be minimal.

For
$$\gamma = 0.2$$
: $\alpha = 0.740976 \Rightarrow (\tau_a, \tau_b) = (0.353t_1, 0.740t_1)$.

Note: (τ_a, τ_b) does not contain $\hat{\tau} = t_1$, but contains $t_1/2$.

Example 4 (cont'd): $x = \ln x, \mu = \ln \tau \Rightarrow f_{I'}(x \mid \mu) = e^{x-\mu} \exp\{-e^{x-\mu}\}.$ For $\gamma = 0.2$: $\alpha = 0.527573 \Rightarrow (\mu_a, \mu_b) = (\ln t_1 - 0.263, \ln t_1 + 0.288).$

Note: $(\mu_a, \mu_b) \neq (\ln \tau_a, \ln \tau_b)$.

Example 5 (Hypothesis testing): $H: \tau = \tau_1$. H rejected at confidence (significance) level γ if τ_1 is outside the shortest confidence interval (τ_a, τ_b) whose coverage is γ .

The choice of parametrization depends on what you want, accept or reject *H* (ideology!).

4/15/2010 26

V. Hypothesis testing:

- 1. Basic definitions,
- 2. Errors of the first and the second kind,
- 3. Neyman-Pearson Lemma,
- 4. Uniformly most powerful tests.

1. Basic definitions.

H. Frank, S.C. Althoen (1994), Statistics, Chaps. 9-11, pp. 326-480.

Inference: what is the value of parameter θ ?

Test of a hypothesis: is θ_0 the value of parameter θ ?

Test (null) hypothesis H_0 : $\theta = \theta_0$.

Alternative hypothesis $H_1: \theta = \theta_1 \ (\theta_1 \neq \theta_0)$ or $\theta > \theta_0$.

Test W: a numerical index that is expected to take the value w_0 if

 H_0 is correct and is expected some other value if H_1 is correct.

Test statistic $W: W = W(x_1, x_2, ...)$.

Rejection (critical) region R_C : the region of the values of a test W that are unlikely (??) if H_0 is correct but relatively likely (??) if H_1 is correct.

Critical value (significance level, size of R_C): $\alpha = \Pr_I(R_C \mid \theta_0)$. Confidence level $Cl = 1 - \alpha$.

Decision: if $w \in R_C$ abandon H_0 in favor of H_1 at confidence level Cl; if $w \notin R_C$, H_1 is rejected.

2. Errors of the first and second kind.

Error I (false positive): rejecting H_0 when it is correct. **Error II (false negative):** rejecting H_1 when it is correct (i.e., fail to reject H_0 when it is indeed false).

 $\alpha = P(\text{Error I}), \beta \equiv P(\text{Error II}).$

Power of the test: $1-\beta$ (probability that a test will reject a false H_0).

4/15/2010

3. Neyman-Pearson Lemma.

A best R_C of size α : $P(R_C \mid H_0) = \alpha$, $P(R_C \mid H_1) \ge P(Q_C \mid H_1)$ for all Q_C for which $P(Q_C \mid H_0) = \alpha$.

Lemma 1 (Neyman-Pearson). $H_0: \theta = \theta_0, H_1: \theta = \theta_1$,

$$W(x_1,\ldots,x_n;\theta_0,\theta_1) = \frac{L(x_1,\ldots,x_n;\theta_0)}{L(x_1,\ldots,x_n;\theta_1)},$$

$$R_C = \{(x_1, ..., x_n) : W(x_1, ..., x_n; \theta_0, \theta_1) \le \eta\}$$

 \Rightarrow R_C is a best critical region of size α , i.e.,

 $W(x_1,...,x_n;\theta_0,\theta_1)$ is a most powerful test

of size
$$\alpha = P(R_C | H_0)$$
.

4. Uniformly most powerful test.

Uniformly most powerful test of size α .

$$H_0: \theta = \theta_0, H_1: \theta \in A; (\theta_0 \notin A),$$
 $W(x_1, \dots, x_n; \theta_0, \theta_1)$ most powerfull for all $\theta_1 \in A$
 $\Rightarrow W(x_1, \dots, x_n; \theta_0, \theta_1)$ is a uniformly most powerful test of size α for alternatives in A .

Example 6 (UMPT for Normal distr.): $\{X_1,...,X_n\}$ i.i.d., $X_i \sim N(\mu,1)$,

$$H_0: \mu = \mu_0, H_1: \mu > \mu_0 \Rightarrow \frac{L(x_1, ..., x_n; \mu_0)}{L(x_1, ..., x_n; \mu_1)}; \mu_1 > \mu_0, \text{ is UMPT}.$$

Example 7: There is no UMPT if $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$.

Text box With shadow

4/15/2010