Semiconductor detectors

- properties of semiconductors
- •p-i-n diode
- interface metal-semiconductor
- measurements of energy
- space sensitive detectors
- radiation damage in detectors

Literatura:

W.R.Leo: Techniques for Nucear and Particle Physics ExperimentsH. Spieler: Semiconductor Detector SystemsG. Lutz: Semiconductor Radiation DetectorsS.M. Sze: Physics of Semiconductor DevicesGlenn F. Knoll: Radiation Detection and Measurement

V. Cindro and P. Križan, IJS and FMF

Typical tracking device in particle physics: silicon strip detector

Two coordinates measured at the same time Typical strip pitch ~50μm, resolution about ~15 μm

Why semiconductors?

- Energy resolution of a detector depends on statistical fluctuation in the number of free charge carriers that are generated during particle interaction with the detector material
- Low energy needed for generation of free charge carriers → good resolution
- Gas based detectors: a few 10eV
- Semiconductors: a few eV!

C.A. Klein, J. Applied Physics 39 (1968) 2029

Comparison: radiation spectrum as measured with a Ge (semiconductor) in Nal (scintillation) detector

(J.Cl. Philippot, IEEE Trans. Nucl. Sci. NS-17/3 (1970) 446)

V. Cindro and P. Križan, IJS and FMF

good energy resolution \rightarrow easier signal/background separation

G.A. Armantrout et al., IEEE Trans. Nucl. Sci. NS-19/1 (1972) 107

V. Cindro and P. Križan, IJS and FMF

Principle of operation:

Semiconductor detector operates just like an ionisation chamber: a particle, which we want to detect, produces a free electron – hole pair by exciting an electron from the valence band:

Fig. 10.2. Covalent bonding of silicon: (a) at 0 K, all electrons participate in bonding, (b) at higher temperatures some bonds are broken by thermal energy leaving a *hole* in the valence band

Drift velocity in electric field:

 $v_d = \mu \cdot E$

 μ mobility

different for electrons and for holes!

V. Cindro and P. Križan, IJS and FMF

properties of semiconductors

	ρ [kg dm ⁻³]	3	E _g [eV]	μ _e [cm ² V ⁻¹ s ⁻¹]	µ _h [cm ² V ⁻¹ s ⁻¹]
Si	2.33	11.9	1.12	1500	450
Ge	5.32	16	0.66	3900	1900
С	3.51	5.7	5.47	4500	3800
GaAs	5.32	13.1	1.42	8500	400
SiC	3.1	9.7	3.26	700	
GaN	6.1	9.0	3.49	2000	
CdTe	6.06		1.7	1200	50

Intrinsic (pure) semiconductor (no impurities)

- n concentration of conduction electrons
- p concentration of holes

$$n = \int_{E_c}^{E_t} N(E) F(E) dE$$

n=p

N(E) density of states

$$F(E) = \frac{1}{1 + \exp(\frac{E - E_F}{kT})}$$

 E_F Fermi energy level

DIAMOND (C, Ge, Si, etc)

Fermi-Dirac distribution

See Modern Physics 2 for a detailed discussion

$$E_F = \frac{E_c + E_v}{2} + \frac{3kT}{4} \ln(\frac{m_h}{m_e}) \xrightarrow{\text{ratio of effective masses of holes}} \text{ and electrons}$$

V. Cindro and P. Križan, IJS and FMF

Pure semiconductor

Neutrality:

$$n = N_c \times \exp(-\frac{(E_c - E_F)}{kT})$$
$$p = N_v \times \exp(-\frac{(E_F - E_v)}{kT})$$

$$n \times p = n_i^2 = N_c N_v \exp(-\frac{E_g}{kT})$$

kТ

$$n_i = \sqrt{N_e N_v} \exp(-\frac{E_g}{2kT})$$

 n_i number density of free charge carriers in an intrinsic semiconductor (only for electrons and holes)

At room themperature:

$$n_{i} = 1.4 \times 10^{10} \, cm^{-3} [Si]$$

$$n_{i} = 2.4 \times 10^{13} \, cm^{-3} [Ge]$$

out of 10²² atoms cm⁻³

 E_c energy of the bottom of conduction band E_v energy of the top of the valence band $E_g = E_c - E_v$ width of the forbidden band

 N_c , N_v : effective density of states in the conduction and valence bands

Semiconductor detectors

Fig. 11 Intrinsic carrier densities of Ge, Si, and GaAs as a function of reciprocal temperature. (After Thurmond, Ref. 20.)

Signal vs background

Assume a gamma ray of E=370 keV is absorbed through photo-effect in a detector, a Si cube with 1cm sides.

The number of electron-hole pairs is $370 \text{keV} / 3.7 \text{eV} = 10^5$

Number of electrons in the conduction band is **1.4** 10¹⁰

 \rightarrow Need a material free of charge carriers

→ Combination of the differently doped Si crystals (p-n junction) with a bias voltage

Properties of semiconductors are modified if we add impurities

• **Donor levels** \rightarrow neutral, if occupied

charged +, if not occupied

• Acceptor levels \rightarrow neutral, if not occupied

charged -, if occupied

shallow acceptors – close to the valence band (e.g. three-valent atoms in Si – examples B, Al)

shallow donors – close to the conduction band (e.g. five-valent atoms in Si – examples P, As)

Fig. 9 Three basic bond pictures of a semiconductor. (a) Intrinsic Si with negligible impurities. (b) n-type Si with donor (phosphorus). (c) p-type Si with acceptor (boron).

V. Cindro and P. Križan, IJS and FMF

n-type semiconductor, with added donors

p-type semiconductor, with added acceptors

Binding energy of a shallow donor state is smaller because of a smaller effective mass and because of the diectric constant (11.9 for Si)

for Si
$$\frac{13.6eV \cdot \frac{m_{eff}}{m_0}}{\varepsilon^2} \approx 0.05eV$$

In most cases it can be assumed that all shallow donors (acceptors) are ionized since they are far from the Fermi level. Neutrality:

$$n + N_A = p + N_D$$

IJS and FMF

As a result, the Fermi level gets shifted:

$$E_{F} - E_{i} = kT \ln(\frac{N_{D}}{n_{i}}) \quad \text{if } N_{D} \gg N_{A} \text{, } n \text{ type semiconductor}$$
$$E_{i} - E_{F} = kT \ln(\frac{N_{A}}{n_{i}}) \quad \text{if } N_{A} \gg N_{D} \text{, } p \text{ type semiconductor}$$
$$V. \text{ Cindro and P. Križan,} \quad Semiconductor \text{ detectors}}$$

Properties of semiconductors with imputies (doped semiconductors)

Fig. 14 Schematic band diagram, density of states, Fermi-Dirac distribution, and the carrier concentrations for (a) intrinsic, (b) *n*-type, and (c) *p*-type semiconductors at thermal equilibrium. Note that $pn = n_i^2$ for all three cases.

.

Resistivity of semiconductors

 $v_d = \mu \cdot E$ Charge drift in electric fieldu *E*, μ mobility

$$j = \sigma \cdot E = \frac{E}{\rho} = e_0 \cdot v_{d_e} \cdot n + e_0 \cdot v_{d_h} \cdot p$$
$$\rho = \frac{1}{e_0(\mu_e n + \mu_h p)} \quad \text{specific resistivity}$$

at room temperature, intrinsic semiconductor :

 $\rho_{Si} = 230 \mathrm{k}\Omega \mathrm{cm}$ $\rho_{Ge} = 47\Omega \mathrm{cm}$

Fig. 21 Resistivity versus impurity concentration for silicon at 300 K. (After Beadle, Plummer, and Tsai, Ref. 38.)

p-n structure

(from Sze, Physics of Semiconductor Devices)

V. Cindro and P. Križan, IJS and FMF

Semicondu

At the p-n interface we have an inhomogenous concentration of electrons and holes \rightarrow difussion of electrons in the p direction, and of holes into the n direction

At the interface we get an electric field (Gauss law)

Potential difference

$$V_{bi} = \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2}$$

 V_{bi} = built-in voltage difference, order of magnitude 0.6V

To the signal only those charges can contribute that were produced in the depleted region with a non-zero electric field \rightarrow

The depleted region should cover most of the detector volume!

How to excrease the size of the depleted region: apply external voltage V_{bias}

- if the potencial barrier is increased, the depleted region
 increases → larger active volume of the detector voltage
 in the reverse direction
- if the potencial barrier decreases, the active volume is reduced, we get a larger current, voltage is in the conduction direction.

The height of the potential barrier: $V_{B} = V_{bias} + V_{bi}$

How large is the depleted region $(x_p + x_n)$?

Neutrality:

$$N_a x_p = N_d x_r$$

For the electric field we have the Poisson equation:

$$\frac{dV}{dx} = \begin{cases} -\frac{e_0 N_d}{\varepsilon \varepsilon_0} (x - x_n) & 0 \le x \le x_n \\ \\ \frac{e_0 N_a}{\varepsilon \varepsilon_0} (x + x_p) & -x_p \le x \le 0 \end{cases}$$

The electric field varies linearly as a function of the coordinate, potential quadratically

V. Cindro and P. Križan, IJS and FMF

Semiconductor detectors

+ V_{bias} (c)

$$x_{n} = \left(\frac{2\varepsilon\varepsilon_{0}V_{bias}}{e_{0}N_{d}\left(1+N_{d}/N_{a}\right)}\right)^{1/2}$$

$$x_{p} = \left(\frac{2\varepsilon\varepsilon_{0}V_{bias}}{e_{0}N_{a}\left(1+N_{a}/N_{d}\right)}\right)^{1/2}$$

$$d = x_{n} + x_{p} = \left(\frac{2\varepsilon\varepsilon_{0}V_{bias}}{e_{0}}\frac{\left(N_{a}+N_{d}\right)}{N_{a}N_{d}}\right)^{1/2}$$
example: $N_{a} \gg N_{d} \implies d \approx x_{n} \approx \left(\frac{2\varepsilon\varepsilon_{0}V_{bias}}{e_{0}N_{d}}\right)^{1/2}$

increases as $V_{bias}^{1/2}$

in terms of the spec. resistivity ρ :

$$d \approx \left(2\varepsilon\varepsilon_0\rho_n\mu_e V_{bias}\right)^{1/2}$$

example: silicon
$$d = \begin{cases} 0.53(\rho_n V_{bias})^{1/2} \,\mu \,\mathrm{m \ n-type} \\ 0.32(\rho_p V_{bias})^{1/2} \,\mu \,\mathrm{m \ p-type} \end{cases}$$

if ρ =20000k Ω cm and V_{bias}=1 V \rightarrow d~75µm

V. Cindro and P. Križan, IJS and FMF

Leakage current

= current in the reverse direction

difussion current:

- difussion of minority carriers into the region with electric field
- current of majority carriers with large enough thermic energy, such that they overcome the potencial barrier

generation current: generation of free carriers with the thermal excitation in the depleted layer

The probability of excitation is dramatically increased in the presence of intermediate levels.

V. Cindro and P. Križan, IJS and FMF

generation current:

$$j_{gen} \propto N_t T^2 \exp(-\frac{E_g}{2kT})$$
 N_t concentration of traps

- \rightarrow high T high generation current
- \rightarrow wider forbidden band $E_{g_{,}}$ lower generation current

Consequence: some detectors have to be cooled (Ge based, radiation damaged silicon detectors)

metal-semiconductor interface (Schottky barrier)

X electron affinity

 Φ work function

Assumption $\Phi_m > \Phi_s$

 $V_{bi} = \Phi_m - \Phi_s$

Fig. 3.9a–e. Metal–semiconductor contact (a). Description in the band model: metal and *n*-type semiconductor separately in thermal equilibrium (b); metal and semiconductor joined together (c); charge density (d); electric field (e)

V. Cindro and P. Križan, IJS and FMF

No external voltage

voltage in the conduction direction

voltage in the reverse direction

Fig. 3.10a-c. Energy band diagram for metal—*n*-type and *p*-type semiconductor junction: in thermal equilibrium (a); with forward bias (b); with reverse bias (c). (After Sze 1985, p. 164 Fig. 4)

Ohmic contact: high concentration of impurities \rightarrow thin barrier \rightarrow tuneling

V. Cindro and P. Križan, IJS and FMF

Manufacturing of semiconductor detectorjev

- 1. manufacturing of monocrystals in form of a cylinder:
- Czochralski (Cz) method

Liquid silicon is in contact with the vessel – higher concentration of (unwanted) impurities

V. Cindro and P. Križan, IJS and FMF

Float zone method:

No contact of the liquid semiconductor with the walls – higher purity of the material.

V. Cindro and P. Križan, IJS and FMF

Photolitography for pattern fabrication

V. Cindro and P. Križan, IJS and FMF

Typical tracking device in particle physics: silicon strip detector

Two coordinates measured at the same time Typical strip pitch ~50μm, resolution about ~15 μm

Signal development in a semiconductor detector

1. interaction of particles with matter (generation of electron – hole pairs)

$$\left(\frac{dE}{dx}\right)_{ion} \propto \rho \frac{Z}{A} \text{ for M.I.P. (minimum ionizing particle, } Z = 1$$
$$\frac{1}{\rho} \frac{dE}{dx} \approx 1.6 \frac{MeV}{gcm^{-2}} \qquad \beta = \frac{v}{c} \approx 0.96$$

- 2. drift of charges in electric field causes an induced current on the electrodes (signal) similar as in the ionisation detector
- 3. Electric field in a uniformly charged volume

$$\frac{d^2 V}{dx^2} = -\frac{\rho_e}{\varepsilon \varepsilon_0} = \frac{e_0 N_{a,d}}{\varepsilon \varepsilon_0}$$

→ $E \alpha - x$ for a negatively charged volume (depleted p doped region)

Signal development 2

Relation between charge carrier propagation and induced current:

detector volume V=S*d n = concentration of carriers

I=j*S current through surface S I=e₀*v*n*S

For a single drifting electron: n*V=n*S*d=1 n*S=1/d

and therefore for a single drifting electron we get: $I=e_0^*v/d$ and $dQ^*d = e_0^*dx$

For an electron-hole pair created at x_0 electrons: $Q_e(t) = -\frac{e}{d}(x(t) - x_0) = -\frac{e}{d}x_0 \left(\exp\left(\frac{\mu_e}{\mu_h}\frac{t}{\tau}\right) - 1\right) \quad \text{for } t < \tau \frac{\mu_h}{\mu_e} \ln\frac{d}{x_0}$ holes: $Q_e(t) = \frac{e}{d}(x(t) - x_0) = -\frac{e}{d}x_0\left(1 - \exp\left(-\frac{t}{\tau}\right)\right)$ Charge QTOT $-\frac{e}{d}x_0(1-\frac{d}{x_0})$ $\frac{e}{d}x_0$ Qe X0 0 Ε eN_Ad Qh 0 $\tau \frac{\mu_h}{\mu_e} \ln \frac{d}{x_0}$ Time

Fig. 10.10. Signal pulse shape due to a single electron-hole pair in an np junction

Signal development 3

	dE / dx [MeV / cm]	Number of pairs/cm	ε (eV)
Si	3.87	1.07 10 ⁶	3.61
Ge	7.26	2.44 10 ⁶	2.98
С	3.95	0.246 10 ⁶	16
gas	~keV/cm	a few 100	~30
Scint.			~300- 1000/ph.e.

Si on average ~100 electron-hole pairs /µm

Radiation damage

Damage caused by:

- Bulk effect: lattice damage, vacancies and interstitials
- Surface effects: Oxide trap charges, interface traps.

Main radiation induced macroscopic changes

2. Change of depletion voltage. Very problematic.

How to mitigate these effects?

- Geometry: build sensors such that they stand high depletion voltage (500V)
- Environment: keep sensors at low temperature (< $-10^{\circ}C$) \rightarrow Slower reverse annealing. Lower leakage current.

Absorption of gamma rays

Photoeffect

$$\sigma_{ph} \propto Z^5 \frac{1}{E_{\gamma}^{7/2}} \quad (E_K < E_{\gamma} < m_e c^2)$$

$$\sigma_{ph} \propto Z^5 \frac{1}{E_{\gamma}} \quad (E_{\gamma} >> m_e c^2)$$

Compton scattering

$$\sigma \propto Z$$

• Pair production

$$\sigma \propto Z^2$$

Figure 13.22 Photoelectric, Compton, and pair production linear attenuation coefficients for Si, Ge, CdTe, and HgI₂. *K*-shell absorption edges are shown. (From Malm.⁴⁶)

Figure 2.13 Transmission curve for monoenergetic electrons. R_e is the extrapolated range.

Figure 2.14 Range–energy plots for electrons in silicon and sodium iodide. If units of mathickness (distance \times density) are used for the range as shown, values at the same electron energy are similar even for materials with widely different physical properties or atom number. (Data from Mukoyama.²⁴)

V. Cindro and P. Križan, IJS and FMF

Figure 12.15 Pulse height spectra taken with a *p*-type HPGe detector with 110% relative efficiency, defined on p. 450. (Spectra courtesy R. Keyser, EG&G ORTEC, Oak Ridge, Tennessee.) (*a*) Spectrum recorded from 662 keV gamma rays emitted by a ¹³⁷Cs source showing the effects of photoelectric absorption and Compton scattering in the detector. In addition to the backscatter peak, Compton continuum, and full energy peak features, a small sum peak is evident from pulse pile-up (see Ch. 17), as well as a small peak from 1460 keV background gamma rays from ⁴⁰K. (*b*) Spectrum from 1460 keV gamma rays emitted by ⁴⁰K that now shows the additional effects of pair production taking place in the detector and surrounding materials. Both single escape (SE) and double escape (DE) peaks can be seen, along with the peak at 511 keV due to annihilation radiation produced by pair production interactions in surrounding materials.

V. Cindro and P. Križan, IJS and FMF

Germanium detectors

PGT detector manual [10.21])

Energy resolution of gamma detectors

Depends on the statistical fluctuation in the number of generated electron-hole pairs.

If all energy of the particle gets absorbed in the detector – E_0 (e.g. gamma ray gets absorbed via photoeffect, and the photoelectron is stopped):

on average we get

$$\bar{N}_i = \frac{E_0}{\varepsilon_i}$$

generated pairs

 $\epsilon_i \sim 3.6 \text{eV}$ for Si ~ 2.98 eV for Ge Average energy needed to create an e-h pair

Figure 4.5 Definition of detector resolution. For peaks whose shape is Gaussian with standard deviation σ , the FWHM is given by 2.35 σ .

V. Cindro and P. Križan, IJS and FMF If we have a large number of **independent** events with a small probability (generation of electron-hole pairs) \rightarrow binominal distribution \rightarrow Poisson

Standard deviation – r.m.s. (root mean square):

$$\sigma = \sqrt{\bar{N}_i}$$

The measured resolution is actually better than predicted by Poisson statistics

- Reason: the generated pairs e-h are not really independent since there is only a fixed amount of energy available (photoelectron looses all energy).
- Photoelectron looses energy in two ways:
- pair generation ($E_i \sim 1.2 \text{ eV}$ per pair in Si)
- excitation of the crystal (phonons) $\rm E_x$ ~0.04 eV for Si

$$ar{N_x}$$
 Average number of crystal excitations
 $ar{N_i}$ Average number of generated pairs
 $\sigma_x = \sqrt{ar{N_x}}$ standard deviation
 $\sigma_i = \sqrt{ar{N_i}}$

Since the available energy is fixed (monoenergetic photoelectrons):

$$E_{i}\Delta N_{i} = -E_{x}\Delta N_{x} \Longrightarrow E_{i}\sigma_{i} = E_{x}\sigma_{x}$$
$$\Longrightarrow \sigma_{i} = \frac{E_{x}}{E_{i}}\sqrt{N_{x}}$$

 E_i = energy needed to excite an electron to the valence band (= E_g)

Width of the energy loss distribution

V. Cindro and P. Križan, IJS and FMF

$$\begin{split} E_i \,\bar{N}_i + E_x \,\bar{N}_x &= E_0 \Longrightarrow \bar{N}_x = \frac{E_0 - E_i \,\bar{N}_i}{E_x} \\ \sigma_i &= \frac{E_x}{E_i} \sqrt{\frac{E_0 - E_i \,\bar{N}_i}{E_x}} \qquad \text{make use of} \quad \bar{N}_i = \frac{E_0}{\varepsilon_i} \\ \Rightarrow \sigma_i &= \sqrt{\bar{N}_i} \sqrt{\frac{E_x}{E_i} (\frac{\varepsilon_i}{E_i} - 1)} = \sqrt{F \,\bar{N}_i} \end{split}$$

- F Fano factor improvement in resolution
- $F \sim 0.1$ for silicon

FIG. 2.12. Intrinsic resolution of silicon and germanium detectors vs. energy.