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Semiconductor detectors
•properties of semiconductors
•p-i-n diode 
•interface metal-semiconductor 
•measurements of energy 
•space sensitive detectors
•radiation damage in detectors

Literatura:
W.R.Leo: Techniques for Nucear and Particle Physics Experiments
H. Spieler: Semiconductor Detector Systems 
G. Lutz: Semiconductor Radiation Detectors
S.M. Sze: Physics of Semiconductor Devices
Glenn F. Knoll: Radiation Detection and Measurement
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50 cm

20 cm

Two coordinates 
measured at the same 
time
Typical strip pitch ~50µm, 
resolution about ~15 µm

pitch

Typical tracking device in particle physics: silicon strip 
detector
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• Energy resolution of a detector 
depends on statistical fluctuation 
in the number of free charge 
carriers that are generated during 
particle interaction with the 
detector material 

• Low energy needed for generation 
of free charge carriers → good 
resolution 

• Gas based detectors: a few 10eV
• Semiconductors: a few eV!

Why semiconductors?
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Comparison: radiation spectrum as measured with a Ge (semiconductor) 
in NaI (scintillation) detector 
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good energy resolution → easier 
signal/background separation 
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Principle of operation: 

Semiconductor detector operates just like an ionisation chamber: a 
particle, which we want to detect, produces a free electron – hole pair 
by exciting an electron from the valence band:

electron 

hole 

Eg
forbidden band, width Eg

conduction 
band

valence band 



V. Cindro and P. Križan, 
IJS and FMF

Semiconductor detectors 7

Drift velocity in electric field:

Evd ×= µ

Evd ⋅= µ
µ mobility

different for electrons and for holes! 
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properties of semiconductors 

ρ [kg dm-3] ε Eg [eV] µe [cm2V-1s-1] µh [cm2V-1s-1]

Si 2.33 11.9 1.12 1500 450

Ge 5.32 16 0.66 3900 1900

C 3.51 5.7 5.47 4500 3800

GaAs 5.32 13.1 1.42 8500 400

SiC 3.1 9.7 3.26 700

GaN 6.1 9.0 3.49 2000

CdTe 6.06 1.7 1200 50
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n - concentration of conduction 
electrons

p - concentration of holes 
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See Modern Physics 2 
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Ec energy of the bottom of conduction band
Ev  energy of the top of the valence band
Eg =Ec-Ev width of the forbidden band

Nc, Nv: effective density of states in the  
conduction and valence bands

At room themperature: 

ni number density of free charge carriers 
in an intrinsic semiconductor (only for  
electrons and holes)



Signal vs background

Assume a gamma ray of E=370 keV is absorbed through photo-effect in a 
detector, a Si cube with 1cm sides.

The number of electron-hole pairs is 370keV / 3.7eV = 105

Number of electrons in the conduction band is 1.4 1010

 Need a material free of charge carriers

 Combination of the differently doped Si crystals (p-n junction) with a bias 
voltage 
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Properties of semiconductors are modified if we 
add impurities 

• Donor levels → neutral, if  occupied
charged +, if not occupied

• Acceptor levels → neutral, if not occupied
charged -, if occupied  

shallow acceptors – close to  the valence band (e.g. three-valent atoms 
in Si – examples B, Al) 

shallow donors – close to the conduction band (e.g. five-valent atoms 
in  Si – examples P, As)
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n-type semiconductor, with added donors
p-type semiconductor, with added acceptors  
Binding energy of a shallow donor state is smaller because of a smaller 

effective mass and because of the diectric constant (11.9 for Si)

0
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In most cases it can be assumed that all shallow donors (acceptors) are
ionized since they are far from the Fermi level. 
Neutrality:
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Properties of semiconductors with imputies 
(doped semiconductors) 
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Resistivity of semiconductors 
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                            cm47  
cm230k

 :torsemiconduc intrinsic
 re, temperaturoomat 

   
)(

1

0

00

Ω=
Ω=

+
=

⋅⋅+⋅⋅==⋅=

Ge

Si

he

dd

ρ

pne

pvenveEEj
he

ρ

µµ
ρ

ρ
σ

Charge drift in electric fieldu E,  µ mobility

specific resistivity



V. Cindro and P. Križan, 
IJS and FMF

Semiconductor detectors 16

p-n structure
At the p-n interface we have an
inhomogenous concentration
of electrons and holes difussion of
electrons in the p direction, and of holes
into the n direction

At the interface we get an electric field
(Gauss law) 

Potential difference

Vbi = built-in voltage difference, 
order of magnitude  0.6V

To the signal only those charges can
contribute that were produced in the
depleted region with a non-zero electric
field
The depleted region should cover most 
of the detector volume!
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How to excrease the size of the depleted 
region: apply external voltage Vbias

• if the potencial barrier is increased, the depleted region 
increases larger active volume of the detector – voltage 
in the reverse direction

• if the potencial barrier decreases, the active volume is 
reduced, we get a larger current, voltage is in the 
conduction direction. 

The height of the potential barrier: VB= Vbias+ Vbi

How large is the depleted region (xp+xn)?
Neutrality:
Na xp = Nd xn

For the electric field we have the Poisson equation: 
0
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Leakage current

= current in the reverse direction

difussion current: 
• difussion of minority carriers into the region with electric field
• current of majority carriers with large enough thermic energy, such 

that they overcome the potencial barrier

generation current: generation of free carriers with the thermal 
excitation in the depleted layer
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The probability of excitation is dramatically increased in the presence of 
intermediate levels. 
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generation current: 

 trapsofion concentrat       )
2

exp(2
t

g
tgen N

kT
E

TNj −∝

→ high T – high generation current
→  wider forbidden band Eg , lower generation current

Consequence: some detectors have to be cooled (Ge based, 
radiation damaged silicon detectors)
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metal-semiconductor interface (Schottky barrier)

Χ electron affinity

Φ work function

Assumption Φm >Φs

Vbi = Φm- Φs
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No external voltage 

voltage in  the conduction direction

voltage in  the reverse direction

Ohmic contact: high concentration of impurities → thin barrier → tuneling 
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Manufacturing of semiconductor detectorjev 

1. manufacturing of  monocrystals in  form of a cylinder:
• Czochralski (Cz) method

Liquid silicon is in contact with the vessel – higher concentration of (unwanted)
impurities
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Float zone method: 

No contact of the liquid 
semiconductor with the walls –
higher purity of the material.
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Photolitography for pattern fabrication 
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Two coordinates 
measured at the same 
time
Typical strip pitch ~50µm, 
resolution about ~15 µm

pitch

Typical tracking device in particle physics: silicon strip 
detector
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Signal development in a semiconductor detector
1. interaction of particles with matter (generation of electron – hole pairs)

2. drift of charges in electric field causes an induced current on the  electrodes 
(signal) – similar as in the ionisation detector

3. Electric field in a uniformly charged volume

 E α –x    for a negatively charged volume 
(depleted p doped region) 
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Signal development 2  

Relation between charge carrier propagation 
and induced current:

detector volume V=S*d
n = concentration of carriers

I=j*S current through surface S
I=e0*v*n*S

For a single drifting electron:  
n*V=n*S*d=1 
n*S=1/d

and therefore for a single drifting electron we get:
I=e0*v/d
and 
dQ*d = e0*dx



Signal development 
For an electron-hole pair created at x0 in 
p-n detector, p-doped and higly n doped (n+) 
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Signal development 3 
For an electron-hole pair created at x0
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Number of  
pairs/cm

ε (eV)

Si 3.87 1.07 106 3.61

Ge 7.26 2.44 106 2.98

C 3.95 0.246 106 16

gas ~keV/cm a few 100 ~30

Scint. ~300-
1000/ph.e.

[ ]cmMeV
dxdE

/
/

Si on average ~100 electron-hole pairs /µm 
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Radiation damage
Damage caused by:
• Bulk effect: lattice damage, vacancies and interstitials
• Surface effects: Oxide trap charges, interface traps.

C. oram, Academic training, CERN, 2002J
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Main radiation induced 
macroscopic changes

How to mitigate these effects?
• Geometry: build sensors such that they stand high depletion voltage (500V)
• Environment: keep sensors at low temperature (< -10ºC) Slower reverse 

annealing. Lower leakage current.
C. oram, Academic training, CERN, 2002J
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Absorption of gamma rays

• Photoeffect 

)(   1

)(     1

25

2
2/7

5

cmE
E

Z

cmEE
E

Z

eph

eKph

>>∝

<<∝

γ
γ

γ

σ

σ
γ

• Compton scattering 

Z∝σ

• Pair production 
2Z∝σ

gamma ray photo-electron 



V. Cindro and P. Križan, 
IJS and FMF

Semiconductor detectors 36



V. Cindro and P. Križan, 
IJS and FMF

Semiconductor detectors 37

Range in cm: divide by the 
density of Si, 2.3 g/cm3

~0.4mm
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Germanium detectors
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Energy resolution of gamma detectors 

Depends on the statistical fluctuation in the number of generated 
electron-hole pairs.

If all energy of the particle gets absorbed in the detector – E0 (e.g. 
gamma ray gets absorbed via photoeffect, and the photoelectron 
is stopped): 

on average we get

generated pairs

  0
_

i
i

EN
ε

=

εi ~ 3.6eV for Si
~ 2.98 eV for Ge

Average energy needed to 
create an e-h pair

gamma ray photo-electron 
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If we have a large number of independent events with a small probability  
(generation of electron-hole pairs) → binominal distribution → Poisson

iN
__

=σ

Standard deviation – r.m.s. (root mean square):

The measured resolution is actually better than predicted by Poisson statistics
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• Reason: the generated pairs e-h are not really independent since there is 
only a fixed amount of energy available (photoelectron looses all energy).

• Photoelectron looses energy in two ways: 
- pair generation (Ei ~ 1.2 eV per pair in Si)
- excitation of the crystal (phonons) Ex ~0.04 eV for Si

_

_

_

_

deviation standard     

 

 

ii

xx

i

x

N

N

N

N

=

=

σ

σ

Average number of crystal excitations 

Average number of generated pairs 

Since the available energy is fixed (monoenergetic photoelectrons):
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