
maginetni moment p in x
$J=\frac{1}{2}$

$$
\begin{aligned}
& \Psi=\left[\psi_{M S_{1}}\left(\theta_{2 n s}\right) \psi_{M 31}(\text { spin })+\psi_{m A 1}\left(\ell_{m s}\right) \psi_{m A 1}(\text { spin })\right] \\
& e_{0} Q_{i} \vec{s}_{i} \quad \psi(\vec{\pi}) \psi(\text { bavia })
\end{aligned}
$$

$\begin{aligned} & \text { OPHRATOR } \\ & \text { i- h lowoir }\end{aligned} \vec{\mu}_{i}=g_{s} \frac{e_{0} Q_{i} \vec{s}_{i}}{2 m_{i}}$

$$
\mu_{3 i}=g_{s} \frac{e_{0} Q_{i} s_{3 i}}{2 m_{i}} \Rightarrow \mu_{p}=\langle p| \sum_{i=1}^{3} \mu_{3 i}|p\rangle
$$

$\left.|p \uparrow\rangle=\frac{1}{\sqrt{18}}[2 \ln \uparrow u \uparrow d \downarrow\rangle-\ln \uparrow u \downarrow d \uparrow\right\rangle-|n \downarrow u \uparrow d \uparrow\rangle+$ $2|d \downarrow u \hat{\imath} \uparrow\rangle-1 d \uparrow u \downarrow u \uparrow\rangle-|d \downarrow u \uparrow u \uparrow\rangle+$ $2|u \uparrow d \downarrow u \uparrow\rangle-|u \downarrow d \uparrow \uparrow \uparrow-| x \uparrow d \uparrow u \downarrow\rangle]$

$$
\mu_{p}=\frac{e_{0}}{2 m_{2}} \quad \mu_{m}=-\frac{2}{3} \frac{e_{0}}{2 m_{2}}
$$

$$
\frac{\mu_{m}}{\mu_{p}}=-\frac{2}{3} \quad \text { EVSPERIMIOUT: } \frac{\mu_{m}}{\mu_{p}}=-0.685
$$

$\mu_{p}=? \quad m_{q}$ NAIVNO: $\frac{m_{p}}{3} \quad \mu_{p}=\frac{3 e_{0}}{2 m_{p}}$
\checkmark niravi $\mu_{p}=g_{s, p} \frac{e_{0} s}{2 m_{p}}=\frac{5,6 \cdot e_{0} \frac{1}{2}}{2 m_{p}}=\frac{2,8 e_{0}}{2 m_{p}}$

Mezonl $g_{i} \bar{q}_{j}$

$$
\begin{aligned}
& \hat{C}:|\underline{q}\rangle \rightarrow|\bar{q}\rangle \quad \text { WNJUCACTA NABSTJA } \\
& \hat{C}|\underline{2}\rangle=e^{i \varphi}|\bar{g}\rangle \quad \hat{C}^{2}|g\rangle=\hat{C}\left(e^{i \varphi}|\bar{g}\rangle\right)=e^{i \varphi} e^{-i \varphi}|g\rangle \\
& \hat{C}|u\rangle=-|\bar{u}\rangle \\
& \langle\mid d\rangle=|a\rangle \\
& \hat{I_{n}}-|u\rangle=I_{T}\left|I=\frac{1}{2}, I_{3}=+\frac{1}{2}\right\rangle=\left|I_{\frac{1}{2}} \frac{1}{2}, I_{3}=-\frac{1}{2}\right\rangle=|d\rangle \\
& I_{+}|d\rangle=|u\rangle \\
& I_{3}(u)=+\frac{1}{2} \quad I_{3}(\bar{u})=-\frac{1}{2} \quad I_{3}(\bar{a})=+\frac{1}{2} \\
& \hat{I}|\vec{a}\rangle=-|\vec{u}\rangle \\
& \vec{I}_{+}|\vec{u}\rangle=-|\vec{d}\rangle
\end{aligned}
$$

WONSTR MEITA VEEANIH STANG

$$
\begin{aligned}
& |u a| \quad I_{3}=+1 \\
& I|u d\rangle=|d \vec{d}\rangle-|u \bar{u}\rangle \quad I_{3}=0 \\
& \tilde{I}_{-}(|d \bar{d}\rangle-|u \bar{u}\rangle)=-|d \bar{u}\rangle-|d \bar{u}\rangle^{I_{3}} I_{3}=-1 \\
& |\pi+\rangle=|u \bar{d}\rangle=\left|I=1, I_{3}=+1\right\rangle \\
& \left|\pi^{0}\right\rangle=\frac{1}{\sqrt{2}}(|\operatorname{ded}\rangle-|u \bar{u}\rangle)^{3}=\left|I=1, I_{3}=0\right\rangle \\
& |\pi>=| d \bar{u}\rangle=\left|I=1, I_{3}=-1\right\rangle \\
& \left.u, d_{k} \rightarrow s, \bar{u}_{1} \bar{o}|\rightarrow \bar{s} \quad| \pi+\right\rangle_{\mathrm{s} \rightarrow \mathrm{~s}}|u \bar{s}\rangle=|K+\rangle \\
& |\pi+\rangle \underset{u \rightarrow s}{\longrightarrow}|s| l\rangle=\left|K^{0}\right\rangle \\
& \left|\pi^{-}\right\rangle_{i \rightarrow s}^{\rightarrow}|s \bar{u}\rangle=\left|K^{-}\right\rangle \quad\left|\pi^{-}\right\rangle_{\bar{u} \rightarrow \bar{s}} \rightarrow|d \bar{s}\rangle=\left|\bar{K}^{0}\right\rangle
\end{aligned}
$$

界M 素粒子宇宙起源研究機構
Kobayashl－Maskawa Institute for the Origin of Particles and the Universe
Natesoj $0, I_{3}=0, \quad s=0 \quad|d d\rangle,|u \bar{u}\rangle,|s \bar{s}\rangle$

SPINSK DEL VACOUNE FUNKCIE ZA MEZONE

$$
\begin{aligned}
& |\uparrow \uparrow\rangle=\left\langle\mid+S=1, S_{3}=+1\right\rangle \\
& \left.\hat{S}_{-}|\uparrow \uparrow\rangle \Rightarrow \frac{1}{|\lambda|}|\downarrow\rangle+|\uparrow \downarrow\rangle\right)=\left|S=1, S_{3}=0\right\rangle \\
& S_{-} \frac{1}{\sqrt{2}}(|\downarrow \uparrow\rangle+|\uparrow \downarrow\rangle) \Longrightarrow|\downarrow \downarrow\rangle=\left|S=1, S_{3}=-1\right\rangle
\end{aligned}
$$

$$
\frac{1}{\sqrt{2}}(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle)=\left|s=0, S_{3} \neq 0\right\rangle
$$

$$
\begin{aligned}
& \left.\frac{1}{\sqrt{3}}(|m \vec{x}\rangle+\mid \text { sld }\rangle+|s \bar{s}\rangle\right)=\left|\eta_{0}\right\rangle \quad u \leftrightarrow s, u \Leftrightarrow d, d \Leftrightarrow s \\
& \text { sincilet } \uparrow \\
& \left|\eta_{8}\right\rangle=a|u \bar{u}\rangle+b|d t\rangle+c|\bar{s}\rangle \\
& \text { SU(3) okus } \\
& \left\langle\eta_{8} \mid \eta_{0}\right\rangle=0 \\
& \left\langle\eta_{B} \mid ग_{l}\right\rangle=0 \\
& 0=\frac{1}{\sqrt{2}}(\langle a \cdot \bar{u}| a+\langle d t| b+\langle s \bar{a}| c)(|d d\rangle-|u \bar{u}\rangle)= \\
& \left\langle\eta_{8} \ln _{8}\right\rangle=1 \\
& =\frac{1}{\sqrt{2}}(b-a) \Rightarrow b=a \\
& \theta \frac{1}{\sqrt{3}}(a\langle u \bar{u}|+b\langle d \bar{d}|+c\langle s \bar{s}|)(|u \bar{u}\rangle+|d \bar{d}\rangle+|s \bar{s}\rangle)= \\
& =\frac{1}{\sqrt{3}}(a+b+c) \Rightarrow 2 a+c=0 \\
& \left|\eta_{8}\right\rangle=\frac{1}{\sqrt{6}}(|u \bar{u}\rangle+|d \bar{d}\rangle-2|s \bar{s}\rangle)
\end{aligned}
$$

DOD $A+1 O \quad K V A R C L C=D_{S}^{C}$

Vereretnosha Gosuta, tur Ducerv, AntidezCi

$$
\begin{array}{r}
E=\frac{p^{2}}{2 m} \quad E \rightarrow \hat{E}=-i h \frac{\partial}{\partial t} \vec{p} \cdot \hat{\bar{p}}=-i \hbar \vec{\nabla} \\
\hat{E} \psi=\frac{\hat{p}^{2}}{2 m} \psi \rightarrow i \frac{\partial \psi}{\partial t}+\frac{h^{2}}{2 m} \nabla^{2} \psi=0
\end{array}
$$

$$
|\psi|^{2}=\psi^{*} \psi=\text { vertennosina } \operatorname{cocurA},|\psi|^{2} d V
$$

Ton Delcev $\vec{\jmath}$
VONTINUTTGTAA ENACRA $\frac{\partial \rho}{\partial t}+\vec{\nabla} \vec{j}=0$

$$
\begin{aligned}
& J=0 \quad\left|\eta_{0}\right\rangle,\left|\eta_{8}\right\rangle \\
& \checkmark \text { nareaul } \\
& \left.\left|\eta_{>}>=\sin \theta\right| \eta_{0}\right\rangle+\cos \theta\left|\eta_{8}\right\rangle \\
& \left.\left|\eta^{\prime}\right\rangle=\cos \theta\left|\eta_{0}\right\rangle-\left.\sin \theta\right|_{\eta_{8}}\right\rangle \\
& J=1\left|\phi_{0}\right\rangle,\left|\phi_{8}\right\rangle \quad \left\lvert\, \begin{array}{l}
\phi\rangle=\sin \theta^{\prime}\left|\phi_{0}\right\rangle+\cos \theta^{\prime}\left|\phi_{8}\right\rangle \\
|\omega\rangle=\cos \theta^{\prime}\left|\phi_{0}\right\rangle-\sin \theta^{\prime}\left|\phi_{8}\right\rangle
\end{array}\right. \\
& |\phi\rangle \sim|s \bar{s}\rangle, \Theta^{\prime}=-0.615
\end{aligned}
$$

$$
\begin{aligned}
& \text { it } \left.\frac{\partial \psi}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=0 \quad \right\rvert\,-i \psi^{*} \\
& \left.-i \hbar \frac{\partial \psi^{*}}{\partial t}+\frac{\hbar^{2}}{2 m} \nabla^{2} \psi^{*}=0 \quad \right\rvert\, i \psi \\
& \frac{\partial \psi}{\partial t} \psi^{*}-\frac{i \hbar}{2 m}\left(\nabla^{2} \psi\right) \psi^{*}=0 \\
& \frac{\partial \psi^{*}}{\partial t} \psi+\frac{i \hbar}{2 m}\left(\nabla^{2} \psi^{*}\right) \psi=0 \\
& \frac{\partial \psi}{\partial t} \psi^{*}+\frac{\partial \psi^{*}}{\partial t} \psi+\frac{i \hbar}{2 m}\left[\left(\nabla^{2} \psi^{*}\right) \psi-\left(\nabla^{2} \psi\right) \psi^{*}\right]=0 \\
& \frac{\partial}{\partial t}\left(\psi^{*} \psi\right)+\frac{i \hbar}{2 m}\left[\psi\left(\nabla^{2} \psi^{*}\right)-\psi^{*}\left(\nabla^{2} \psi\right)\right]=0 \\
& 0=\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)+\frac{i \hbar}{2 m} \vec{\nabla}\left[\psi \vec{\nabla} \psi^{*}-(\nabla \psi)\left(\vec{*} \psi^{*}\right)-\psi^{*} \vec{\nabla} \psi+\left(\nabla \psi^{*}\right)(\nabla \psi \psi)\right] \\
& 0=\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)+\frac{i \hbar}{2 m} \vec{\nabla}\left[\psi \vec{\nabla} \psi^{*}-\psi^{*} \vec{\nabla} \psi\right] \\
& \left.\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{j}=0 \Rightarrow \vec{j}=\frac{i \hbar}{2 m}\left[\psi \vec{\nabla} \psi^{*}-\psi^{*} \nabla \psi\right]\right]
\end{aligned}
$$

NARAVNE ENOTE $t=1, c=1$

$$
\begin{aligned}
& t c=197 \mathrm{MoVgm}, c=310^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \psi=\frac{1}{\sqrt{V}} e^{\mid \vec{p} \cdot \vec{t}-i E t} \\
& \Rightarrow p=k \\
& \rho=\psi^{*} \psi=\frac{1}{V} \quad \vec{\gamma}=\frac{1}{2 m} \frac{1}{V}[-i \vec{p}-i \vec{p}]=\frac{2 \vec{p}}{2 m} \cdot \frac{1}{V}= \\
& =\frac{1}{V} \cdot \vec{v} \quad(\vec{j}=\rho \vec{v})
\end{aligned}
$$

KLED GORDONDIA E．

$$
\begin{aligned}
& \left.-\frac{\partial^{2} \phi}{\partial t^{2}}+\nabla^{2} \phi=m^{2} \phi \right\rvert\,+\left(-\phi^{\phi}\right) \\
& \left.-\frac{\partial^{2} \phi^{*}}{\partial t^{2}}+\nabla^{2} \phi^{*}=m^{2} \phi^{*} \right\rvert\,(-(-i \phi)
\end{aligned}
$$

$$
\begin{gathered}
\left.i\left[\frac{\partial^{2} \phi}{\partial t^{2}} \phi^{*}-\frac{\partial^{2} \phi^{*}}{\partial t^{2}} \phi\right]+i\left(\nabla^{2} \phi\right) \phi^{*}+\left(\nabla^{2} \phi^{*}\right) \phi\right]=0 \\
\frac{\partial}{\partial t}\left[i\left(\phi^{*} \frac{\partial \phi}{\partial t}-\phi^{\partial} \frac{\partial \phi^{*}}{\partial t}\right)\right]+i \vec{\nabla}\left[\phi \vec{\nabla} \phi^{*}-\phi^{*} \vec{\nabla} \phi\right]=0 \\
\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{\jmath}=0 \\
\vec{\jmath}=i\left(\phi \vec{\nabla} \phi^{*}-\phi^{*} \vec{\nabla} \phi\right) \quad \rho=i\left(\phi^{*} \frac{\partial \phi}{\partial t}-\phi \frac{\partial \phi^{*}}{\partial t}\right)
\end{gathered}
$$

RAUNI VAL $\phi=\frac{1}{\sqrt{V}} e^{\mid \vec{p} \cdot \vec{n}-i t t} \quad j=\frac{2 \vec{p}}{V} \quad \rho=\frac{2 E}{V}$
NORMALIBACESA ： 1 DAE NA V scmédd． IE Dercau na V Kumn－Gordon

$$
\left.\begin{array}{l}
d^{3} x \underset{\text { LORENRAAT }}{\longrightarrow} d x^{3} \sqrt{1-\left(N_{c}\right)^{2}} \\
\rho \rightarrow \frac{\rho}{\sqrt{1-\frac{N^{2}}{c^{2}}}}
\end{array}\right\} \rho d^{3} x \rightarrow \rho d^{3} x
$$

$$
\text { CEIVGREC An ADOU } \partial^{\mu}=\left(\frac{\partial}{\partial t},-\vec{\nabla}\right) \quad \partial_{\mu}=\left(\frac{\partial}{\partial t}, \vec{\nabla}\right)
$$

$$
\partial^{\mu} \partial_{\mu} \equiv \sum_{\mu=0}^{3} \partial^{\mu} \partial_{\mu}=\frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}
$$

$$
\text { KLEN-GIRDONOVA E }\left(\partial_{\mu}^{\mu} \partial_{\mu}+m^{2}\right) \phi=0
$$

$$
\text { V.NATINvitetna } E . \quad y_{j u}=0 \quad j^{\mu}=(0, \vec{j}), j=(p, \vec{j})
$$

