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Overview of the lecture: 
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– Part 1:  Cosmic rays (CR) up to 1018 eV (EeV) 
 

 
– Part 2: Neutrinos as Cosmic Ray messengers 

 



Part 1  
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– Discovery of Cosmic rays (CR) 
 

– How to measure CR – spectrum and composition 
 

– Below the knee: direct measurements 
 

– Above the knee: Extensive air showers (EAS) 
 

– PeV-EeV: Spectrum and Composition 
 

– Anisotropy 
 

– Possible sources 
 
 
 



Cosmic Rays 
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100 years after their discovery not yet understood 
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Extended Air Showers (EAS) 
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1938 
Pierre Auger 
discovered  

EAS 

with 2 Geiger-Müller counters in 
coincidence, Auger and his colleagues 
detected extensive air showers. 



Zwicky’s proposal for the CR Origin 
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“Cosmic rays are caused by 
exploding stars which burn with a 
fire equal to 100 million suns and 
then shrivel from ½ million mile 
diameters to little spheres 14 
miles thick.” 

In Los Angeles Times, Jan. 1934  



Useful Cosmic Rays 
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µ 

π 

e 

anti-electron 

The cradle of particle physics 

Testing detectors, educational outreach, …  

educational outreach, … 

Motor of Evolution 

C-14 dating 



Charged Cosmic Ray Spectrum 
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LHC(p) 

Flux (m2 sr s GeV)-1 

LHC(pp) 

~ 
32
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ec
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~ 32 decades 
 
⇒ very different 
detection methods 
 
very different 
detector sizes 

Where and how are the  
highest energies produced??? 
 
Galactic and/or extragalactic? 
 
What is the composition? 
 
Is there an energy cut-off?  



Balloon Experiments 
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• volume up to 1 Million m3  
• pay load up to 3 to 
• height up to 40 km.  
• atmospheric depth 3-5 g/cm2  

• compare to λint(proton) = 90 g/cm2 
 
example:  
Helium buoyancy of 1 kg/m3 on ground 
⇒ for a load of 2000 kg need  2000 m3 helium  
⇒ 400 000 m3 at height of 5 g/cm2  
 



Balloon: Detectors 
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Identification without magnet: 

Transition Radiation 

X-Ray Intensity  ~ γ = E/Mc2 

Charge 

Energy 
ε1 ε2 ε2 ε1 ε1 
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CR Composition up to ~100TeV 
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~ GeV 

accelerated about 107 years ago 
charged particles stay in galaxy 
due to magnetic field 

Filled due to interactions  

◊ ◊ 
◊ ◊ ◊ ◊ 

◊ ◊ ◊ 
◊ ◊ 

◊  CR 1 TeV (CREAM) 
 ~GeV 

1 TeV 1 PeV 

Li, Be, B surpressed in fusion 
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Flux (m2 sr s GeV)-1 

Extensive Air Showers                 



Ljubljana, March 2015 H.Kolanoski - Lecture 'Origin of Cosmic Rays' - 1 13 

Air Shower Development 
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Shower age: 

0 ≤ 𝑠 𝑋 ≤ 3 

𝑠 𝑋𝑚𝑚𝑚 = 1 



Longitudinal Shower Profile 
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Shower profile can be seen with Cherenkov and fluorescence telescopes. 

But mostly air shower detectors are  calorimeters with only one readout plane. 

Gaisser-Hillas Formula: 

e.g.: at 100 PeV about 107 particles 
on sea level. 

Ne,max, Xmax, X1, Λ  are parameters 
 
Λ≈ 70 g/cm2 is an effective rad. length 



Lateral Distribution Functions 
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NKG: 

Molière radius 

normalization 

𝑠 = 3/(1 + 2𝑋𝑚𝑚𝑚/𝑋) shower age 
𝑁𝑒(𝑋)     number of particles at depth 𝑋 



Shower Physics and Interaction Models 
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• hadronic interaction models: SYBILL, QGSJET, EPOS 
 

• FLUKA for lower energies 
 

• Tuning with LHC 
 



Coverage of LHC Detectors 

17 

➙ energy & particle flow at all rapidities 
pT, σTot, σinel, σdiffr, ... 

p+p @ 14 TeV 

particle flow 

energy flow 
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rapidity 



Improvements in Models thanks to LHC 
Before LHC Now 

Xmax model uncertainties improved 
from ~ 50 g/cm2 to ~ 20 g/cm2 

18 



p-Air Cross-Section from Xmax distribution 

Data: 1018 eV < E < 1018.5 eV 

In practice: σp-Air  

by tuning models to 
describe Λ seen in data 

X1: point of 1st interaction 
ΔX1 

ΔXmax = ΔX1 

Difficulties: 
• mass composition can alter Λ 
• fluctuations in Xmax 
• experimental resolution ~ 20 g/cm2 

Λint 

19 

𝜎𝑝−𝑚𝑎𝑎 =
𝑛𝑚𝑎𝑎
𝜆𝑎𝑖𝑖

 



20 

p-Air and pp Cross section @ √s=57 TeV 

Conversion from p-air 
to p-p cross section 
    by 
Glauber-approach 

σp-Air= (505±22stat (+26 )sys ) mb  –34 

σpp  = [92 ± 7stat (+9     )sys ± 7.0Glauber] mb  –11 
LHC inel 

σpp  = [133 ± 13stat (+17 )sys ±16Glauber] mb  –20 
tot 

Auger 

Auger Collaboration, PRL 109, 062002 (2012) 



Detecting Extensive Air Showers 
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Detector sizes 
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very high particle densities in air showers   take only samples  

distance  7.5 m 
size  40000 m2 

energies 10 TeV – 1 PeV 

Tibet AS-γ  

distance  1500 m 
size  3000 km2 

energies EeV – 100 EeV 

Pierre Auger 

KASCADE 

distance  13 m 
size  40000 m2 

energies 100 TeV – 10 PeV 

distance  125 m 
size  1 km2 

energies PeV –  EeV 

IceTop 



Sampling Detectors 
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water/ice Cherenkov detectors 
measure: calorimetric energy 

scintillation counters 
measure: number of particles 

Sampling on the surface 



Sampling of longitudinal shower profile 
non-imaging Cherenkov imaging Cherenkov 

fluorescence telescope 
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muon detectors 
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GeV muons 
from shower  
products 

TeV muons  
from first interaction, 
near shower axis 

muon number is  
composition sensitive: 

 
for HE nucleus each nucleon  
interacts independently   
⇒ higher hadron multiplicity  
⇒ higher meson decay rate 
⇒  higher muon rate 



Sampling distance  
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• you need  large areas,  
 

• but need not completely covered 
because of high particle densities 
 

• for O(m2) detector find range of 
suitable signals, see  
 

• chose sampling distance such that 
that detector does not limit energy 
and angle resolution   

10

100

1000

4 5 6 7 8 9

R
 [m

] 
 

log(E/GeV) 

Effective Lateral Shower Size  

1000 m 

1.1 PeV 

Energy dependence of the radius  
above which signals drops in a  
3-m2-detector below 0.2 VEM  

100 m 

92 TeV 70 PeV 

250 m 

Estimate for IceTop: 
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Air Shower Reconstruction 

• shower direction:    θ, φ  

• shower centre          xc, yc 
• shower size               ⇒ E0  

                                     (with mass hyp.) 

• shower age:              ⇒ Xmax  

⇒
 

),,( iii txs 
N signals 

xc 

yc 

θ 
shower front 

lateral distribution of signals 

S125 

reference signal  
size at R=125 m 



Detectors in the PeV to EeV Range 
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e.g. Kaskade-Grande, Tunka, IceTop,  

Typical size ~ 1 km2 

IceTop 

Tunka 

Kaskade-Grande 

What limits a 1 km2 detector? 
 

at 1 EeV: F=1.5×10-21 (m2 sr s GeV)-1 

for ∆log E = 0.1;   ∆Ω=1.8 sr (θ<45°);   A=1 km2  

you get about 8 events per year 
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IceCube Detector 

IceCube with IceTop is a   
3-dim Air Shower Detector 

 
unprecedented volume 

CR Analyses 
 
• air showers in IceTop 

 
• muon (bundle)s in IceCube 

 
• atm. neutrinos in IceCube 

 
• IceCube - IceTop coinc. 

IC-1 
2005 

IC-9 
2006 

IC-22 
2007 

IC-40 
2008 

IC-59 
2009 

IC-79 
2010 

IC-86 
2011 

Detector Completion Dec 2010 



Aerial view of IceCube/IceTop 
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10 m 

125 m 



DOM – Digital Optical Module 
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junction cable 

pressure glas sphere 

harness 

elektronics: 
high voltage, 
digitalization, 
data transfer 

photomultiplier = light sensor 

Ø 32cm 



DOM – Frontend Electronics 
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3 amplifications: 
least significant bit (LSB):       0.15 pe  (photoelectronen) 
saturation HG DOM     8000 pe    ⇒  effective 16 bit 
saturation LG DOM 125000 pe    ⇒  effective 20 bit 

~ 106 steps 

PMT with integrated HV-converter 
• Onboard Digitalisation 

o ATWD, 128 Samples in 422 ns 
o FADC, 256 samples in 6.4 µs 

• Local Coincidence with neighbors 
• Onboard calibration and tests 
• Autonomous operation 
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Final IceTop Detector Array 2011 

final detector: 
81 stations (162 tanks)  
mostly ~ 125 m;  
In-fill array: 3 inserts +5 closest stations 

In-fill 



Calibration: Vertical Equivalent Muons 

1 VEM ≈ 125 PE 

signal distribution  
in untriggered 
calibration runs 
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IceTop Signal Recording 

charge [PE] vo
lta

ge
 

time [ns] 

leading edge 

baseline 

3.3 ns; 128 bins  ≈ 420 ns 

DOMs 

⇒  snow height on tanks 
muon signal  
                                                                                                                      

e.m. background 



Shower Development for Different Nuclei 
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N 

X / g cm-1 

earlier e/m 

μ 

proton 
first interaction 

surface  
observation 

earlier, 
same height 

more 
heavier 
nucleus: 
 
• earlier maximum 

 
• more muons 

proton 

N 

X / g cm-1 

e/m 

μ 



Composition dependent Observables 
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Kampert_Unger_composition_1201.0018v2 

Nµ~A0.23 E0.77 

Muon Multiplicity 



Derived Spectrum Depends on Composition: 
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Different  shower age of different elements 

flux of primary CR: 
 

𝐽 𝐸 =  
𝑑𝑁

𝑑𝐸 𝑑𝑑 𝑑Ω 𝑑𝑑
 

shower size 
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Composition Sensitivity of Slant Depth 
shower size depends on zenith angle 

Proton assumption Iron assumption 
          IceCube                     IceCube           

→ Flux not isotropic for proton or iron only assumptions 
→ Mixed composition needed! 

→ Isotropy requirement leads  to composition sensitivity with surface detector only! 

N 

X / (g cm-2) 

e/m 

μ 𝜃 
θ 

Slant depth = 𝑋 𝜃 = 𝑋(0)/ cos𝜃 
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Composition Model H4a 

H4a model 

IceCube preliminary 

T.K.Gaisser. “Spectrum of cosmic-ray nucleons, kaon production, and 
the atmospheric muon charge ratio.”  Astropart. Phys. 35 (2012) 801. 

 ARXIV:1303.3565 

Data require at least 2 galactic contributions 
and in addition an extragalactic one 



PeV to EeV 
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3.14 

2.90 

3.37 

𝛾=2.65  

The fine structure in the spectrum  

𝐹 = 𝐸−𝛾 



Confinement in the Galaxy 
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O 
Fe 

H 

10 kpc 

B
ez

pR  
 

  :Rigidity ρ==

CR in galaxy: mean lifetime 107 years 

Energy has to be refueled.  

Where, how?  

Emax ~ Z   ⇒  Emax (Fe) ≈ 26 Emax (H) 
MeV/m3 

cosmic rays 0.5 
optical star light 0.6 
CMB 0.26 
galactic B-field 0.25 

energy densities in galaxy 



Origin and Physics of the knee(s) 

Coll. Ljubljana, 16. 3.  2015 H.Kolanoski - IceCube Neutrino Observatory  42 

If the knee is due to the diffusion out of 
the galaxy we expect a change in 

composition towards  heavier elements 

spectrum below the knee: well known by direct measurements; 
above the knee: indirect measurements via air showers, difficult 

p knee 

Fe knee 



Spectrum and Composition  
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IceCube 
sh

ow
er

 a
xi

s 

HE Muons 
TeV’s 

electro-mag.  
particles: MeV’s 

LE Muons 
GeV’s IceTop 

IceCube/IceTop's Strength 

EM 

µ 
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IT73/IC79 Composition Analysis 
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NN: Spectrum and Composition 
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Average Mass Composition 
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Systematics are still Large 



Mass Spectra 

Ljubljana, March 2015 H.Kolanoski - Lecture 'Origin of Cosmic Rays' - 1 48 



Cosmic Accelarators 
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Supernova Remnants 

RXJ1713 as seen by HESS 

Fermi acceleration 
at shock front  



Efficiency of SNR for Cosmic Rays 
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With 1% efficiency of SN all cosmic rays can be explained  

ρE
CR  ≈ 0.5 MeV/m3            CR energy density 

τG
CR   ≈ 107 years                time spent in galaxy 

VG ≈ 1061 m3                       volume of galaxy (r ≈ 15 kpc, h ≈ 0.5 kpc) 
 
Reqired acceleration power: 
 
                               LCR ≈ VG ρE

CR /τG
CR ≈ 3×1033 J/s 

 

Total power of supernova explosions: 
 
τG

SN   ≈ 30-50 years            time between SN explosions in milky way 
ESN ≈ 3×1046 J                    energy per SN 
 
                                LSN ≈ ESN /τG

SN ≈ 3×1035 J/s 

 
 



Acceleration of Nuclei in SNR? 
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Fermi LAT 

Fermi sat. 

TeV gamma telscope 



Acceleration of Nuclei in SNR? 
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radio X-ray     TeV          Energie 

Hadron accelerators 

γ 
e 

π0 production 

π0  γγ 
p 

radio     X-ray     TeV             Energie 

Electron accelerators 

γ 
γ e 

synchrotron 
emission 

inverse 
Compton effect 

synchrotron 
emission 



Hadronic or Leptonic? 
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after Fermi measurements: 
 
Leptonic 

example: 
 
RXJ1713 



Detection of the Characteristic Pion-Decay Signature in 
Supernova Remnants using Fermi LAT 
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Solid lines: best fit pion-decay gamma-ray  

Dashed lines: denote the best-fit bremsstrahlung 



UHECR 
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The highest energies in nature 
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3000 km2 

Pierre Auger Observatory 
distance   1500 m 
size  3000 km2 

energies EeV – 100 EeV 



Event Example in Auger Observatory 
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Summary of UHECR Results 

cut-off at 1020 eV  
definitely observed 

Cen A 
10-16 Mly 

28/84 = 33% 
isotropic background = 21% 
➙ <1 % chance probability 

direction correlation with AGN? 

Auger Observatory 

GZK or source power limited? 
 
(GZK = Greisen-Zatsepin-Kuzmin)  



Ljubljana, March 2015 H.Kolanoski - Lecture 'Origin of Cosmic Rays' - 1 59 

CMB 2.7 K  →  threshold Ep ≈ 4×1019 eV 

“GZK horizon” ~160 Mly 

Cosmic Rays, CMB Photons and Neutrinos 

Cosmic Microwave Background  
(CMB):  

perfect blackbody at 2.74 K 



Nature of the Cutoff? 

60 

Is this the “GZK cutoff ”?  
Energy loss by collison with CMB photons? 

  
Or do accelerators run out of steam?  

⇒ composition becomes heavier  Fe 
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Auger: Xmax with florescence detectors 

data suggest change of 
composition from light to heavy 

 
Not GZK cutoff?  

Clarification from other messengers? 
 

Are there GZK neutrinos? 



Limiting energy of CR sources ? 

61 

Protons Emax,p = 1018.4 eV 
Iron Emax, Fe = 26 Emax,p 

        = 1020 eV 

(Allard, arXiv:1111.3290) 

Fluctuations of Xmax 

Natural transition to heavier 
composition at high energy ! 

Note: In this picture flux 
is not suppressed by GZK! 

model 

model 
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