### **Search for the Origin of Cosmic Rays**

# Part 1: Cosmic Rays

#### Lecture at the J. Stefan Institute Ljubljana within the course: 'Advanced particle detectors and data analysis'



Hermann Kolanoski Humboldt-Universität zu Berlin and DESY



Ljubljana, March 2015

#### **Search for the Origin of Cosmic Rays**

# Part 1: Cosmic Rays

#### Lecture at the J. Stefan Institute Ljubljana within the course: 'Advanced particle detectors and data analysis'



Hermann Kolanoski Humboldt-Universität zu Berlin and DESY



Ljubljana, March 2015

### **Overview of the lecture:**

- Part 1: Cosmic rays (CR) up to 10<sup>18</sup> eV (EeV)

– Part 2: Neutrinos as Cosmic Ray messengers

### Part 1

- Discovery of Cosmic rays (CR)
- How to measure CR spectrum and composition
- Below the knee: direct measurements
- Above the knee: Extensive air showers (EAS)
- PeV-EeV: Spectrum and Composition 4
- Anisotropy
- Possible sources

# Cosmic Rays

100 years after their discovery not yet understood





# Extended Air Showers (EAS)



### Zwicky's proposal for the CR Origin

Be Scientific with OL' DOC DABBLE.





"Cosmic rays are caused by exploding stars which burn with a fire equal to 100 million suns and then shrivel from ½ million mile diameters to little spheres 14 miles thick."

Figure 4.2: The cartoon which appeared in the Los Angeles Times of 19 January 1 strip entitled 'Be Scientific with Ol' Doc Dabble'.

#### In Los Angeles Times, Jan. 1934

# **Useful Cosmic Rays**

# Motor of Evolution

Original

Correct copy





#### Testing detectors, educational outreach, ...





Ljubljana, March 2015

# **Charged Cosmic Ray Spectrum**



# **Balloon Experiments**



- volume up to 1 Million m<sup>3</sup>
- pay load up to 3 to
- height up to 40 km.
- atmospheric depth 3-5 g/cm<sup>2</sup>
- compare to  $\lambda_{int}(proton) = 90 \text{ g/cm}^2$

#### example:

Helium buoyancy of 1 kg/m<sup>3</sup> on ground  $\Rightarrow$  for a load of 2000 kg need 2000 m<sup>3</sup> helium  $\Rightarrow$  400 000 m<sup>3</sup> at height of 5 g/cm<sup>2</sup>

# **Balloon: Detectors**

#### Identification without magnet:

#### **Transition Radiation**



Calorimeter

10 cm

Ljubljana, March 2015

H.Kolanoski - Lecture 'Origin of Cosmic Rays' - 1

Scintillator

Cerenkov

TRD

TRD

SCD

S0/S1

Graphite S2 Graphite S3

W - Scintillator

# CR Composition up to ~100TeV



Ljubljana, March 2015

# **Extensive Air Showers**

Flux (m<sup>2</sup> sr s GeV)<sup>-1</sup>



### Air Shower Development



 $\mathbf{V}$ 

N

J.Oehlschlaeger, R.Engel, FZKarlsruhe

$$\lambda_a = \lambda_a \cdot \rho = \frac{1}{N_A \cdot \sigma} \approx 90 \,\mathrm{g} \,\mathrm{cm}^{-1}$$
$$\lambda_a' = X(h) = X_N \cdot e^{-h/H} \implies h = H \cdot \ln \frac{X_N}{\lambda_a'} \approx 20.5 \,\mathrm{km}$$

A

Ljubljana, March 2015

H.Kolanoski - Lecture 'Origin of Cosmic Rays' - 1

-2

nn

Atmospheric depth in g/cm<sup>2</sup>:

$$X(h) = \int_{h}^{\infty} \rho(z) dz \approx p(h) / g$$

Shower age:



 $0 \le s(X) \le 3$  $s(X_{max}) = 1$ 

# Longitudinal Shower Profile



Gaisser-Hillas Formula:

$$N_e(X) = N_{e,max} \left(\frac{X - X_1}{X_{max} - X_1}\right)^{\frac{X_{max} - X_1}{\Lambda}} \exp \frac{X_{max} - X_1}{\Lambda}$$

 $N_{e,max}$ ,  $X_{max}$ ,  $X_1$ ,  $\Lambda$  are parameters  $\Lambda$ ≈ 70 g/cm<sup>2</sup> is an effective rad. length

e.g.: at 100 PeV about 10<sup>7</sup> particles on sea level.

Shower profile can be seen with Cherenkov and fluorescence telescopes.

But mostly air shower detectors are calorimeters with only one readout plane.



#### **Shower Physics and Interaction Models**

- hadronic interaction models: SYBILL, QGSJET, EPOS
- FLUKA for lower energies



Ljubljana, March 2015

#### Coverage of LHC DetectOrs



Ljubljana, March 2015

#### Improvements in Models thanks to LHC



#### p-Air Cross-Section from X<sub>max</sub> distribution



- mass composition can alter Λ
- fluctuations in Xmax
- experimental resolution ~ 20 g/cm<sup>2</sup>

### p-Air and pp Cross section @ $\sqrt{s}=57$ TeV



### **Detecting Extensive Air Showers**



Ljubljana, March 2015

### **Detector sizes**

very high particle densities in air showers  $\rightarrow$  take only samples



Ljubljana, March 2015

# **Sampling Detectors**

#### Sampling on the surface





water/ice Cherenkov detectors measure: calorimetric energy

### Sampling of longitudinal shower profile

#### imaging Cherenkov



#### non-imaging Cherenkov







# muon detectors



# Sampling distance

- you need large areas,
- but need not completely covered because of high particle densities
- for O(m<sup>2)</sup> detector find range of suitable signals, see →
- chose sampling distance such that that detector does not limit energy and angle resolution

#### Estimate for IceTop:





# Detectors in the PeV to EeV Range



What limits a 1 km<sup>2</sup> detector?

at 1 EeV: F=1.5×10<sup>-21</sup> (m<sup>2</sup> sr s GeV)<sup>-1</sup> for  $\Delta \log E = 0.1$ ;  $\Delta \Omega = 1.8$  sr ( $\theta < 45^{\circ}$ ); A=1 km<sup>2</sup> you get about 8 events per year

Ljubljana, March 2015

#### Typical size ~ 1 km<sup>2</sup>

e.g. Kaskade-Grande, Tunka, IceTop,



28



Ljubljana, March 2015

# Aerial view of IceCube/IceTop

 $10 \,\mathrm{m}$ 

Ljubljana, March 2015

125 m

125 m

# DOM – Digital Optical Module

#### pressure glas sphere

junction cable

harness

elektronics: high voltage, digitalization, data transfer

photomultiplier = light sensor

9/2010 IceCube Ø 32cm

### **DOM – Frontend Electronics**



#### PMT with integrated HV-converter

- Onboard Digitalisation
  - ATWD, 128 Samples in 422 ns
    FADC, 256 samples in 6.4 µs
- Local Coincidence with neighbors
- Onboard calibration and tests
- Autonomous operation



# 3 amplifications:least significant bit (LSB):0.15 pe (photoelectronen)saturation HG DOM8000 pe $\Rightarrow$ effective 16 bitsaturation LG DOM125000 pe $\Rightarrow$ effective 20 bit

Ljubljana, March 2015

#### Final IceTop Detector Array 2011



#### final detector:

81 stations (162 tanks) mostly ~ 125 m; In-fill array: 3 inserts +5 closest stations





Ljubljana, March 2015

# IceTop Signal Recording



Ljubljana, March 2015

### Shower Development for Different Nuclei



### **Composition dependent Observables**



LIUUIJana, March 2013

п. којановки - Leciure 'Origin of Cosmic Rays' - 1

10<sup>8</sup>

E=10<sup>17</sup>eV

E=10

10'

#### **Derived Spectrum Depends on Composition:**



Ljubljana, March 2015

E<sup>2.7</sup>× dE dA dΩ dt [GeV<sup>1.7</sup> m<sup>-2</sup> sr<sup>-1</sup>s<sup>-1</sup>]

#### **Composition Sensitivity of Slant Depth**



- $\rightarrow$  Flux not isotropic for proton or iron only assumptions
- $\rightarrow$  Mixed composition needed!
- → Isotropy requirement leads to composition sensitivity with surface detector only!

#### **Composition Model H4a**

T.K.Gaisser. "Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio." Astropart. Phys. 35 (2012) 801.



Data require at least 2 galactic contributions and in addition an extragalactic one



# PeV to EeV





Coll. Ljubljana, 16. 3. 2015

### Origin and Physics of the knee(s)



spectrum below the knee: well known by direct measurements; above the knee: indirect measurements via air showers, difficult



Ljubljana, March 2015



# IT73/IC79 Composition Analysis



### NN: Spectrum and Composition



### Average Mass Composition Systematics are still Large



# Mass Spectra



# **Cosmic Accelarators**

Supernova Remnants

Fermi acceleration at shock front

E

shocked gas

(downstream)

u

θ,

unshocked gas

(upstream)

98

#### RXJ1713 as seen by HESS

 $E_{i}$ 

 $E_2$ 

# Efficiency of SNR for Cosmic Rays

 $\rho_E^{CR} \approx 0.5 \text{ MeV/m}^3$   $\tau_G^{CR} \approx 10^7 \text{ years}$   $V_{G^{\approx}} 10^{61} \text{ m}^3$ 

CR energy density time spent in galaxy volume of galaxy ( $r \approx 15$  kpc,  $h \approx 0.5$  kpc)

Reqired acceleration power:

$$L_{CR} \approx V_G \rho_E^{CR} / \tau_G^{CR} \approx 3 \times 10^{33} \text{ J/s}$$

Total power of supernova explosions:

 $T_G^{SN} \approx 30-50$  yearstime between SN explosions in milky way<br/>energy per SN $E^{SN} \approx 3 \times 10^{46}$  Jenergy per SN $L_{SN} \approx E^{SN} / T_G^{SN} \approx 3 \times 10^{35}$  J/s

With 1% efficiency of SN all cosmic rays can be explained

# Acceleration of Nuclei in SNR?

#### TeV gamma telscope





# Acceleration of Nuclei in SNR?

#### Hadron accelerators

synchrotron emission

#### $\pi^0$ production



#### **Electron accelerators**

synchrotron emission

inverse Compton effect



### Hadronic or Leptonic?



Ljubljana, March 2015

H.Kolanoski - Lecture 'Origin of Cosmic Rays' - 1

53

#### Detection of the Characteristic Pion-Decay Signature in Supernova Remnants using Fermi LAT



Solid lines: best fit pion-decay gamma-ray

Dashed lines: denote the best-fit bremsstrahlung

# UHECR

### The highest energies in nature



### Event Example in Auger Observatory

0.00



Ljubljana, March 2015

H.Kolanoski - Lecture 'Origin of Cosmic Rays' - 1

0000000000000

00000000000000

00000000000000000

# Summary of UHECR Results



#### Cosmic Rays, CMB Photons and Neutrinos



Cosmic Microwave Background (CMB): perfect blackbody at 2.74 K



Greisen-Kuzmin-Zatsepin (GZK) Cut-Off

$$\gamma_{cmb} p \rightarrow \Delta^+ \rightarrow \frac{n \pi^+ \rightarrow n \mu \nu}{p \pi^0 \rightarrow p \gamma \gamma}$$

CMB 2.7 K  $\rightarrow$  threshold E<sub>p</sub> ≈ 4×10<sup>19</sup> eV "GZK horizon" ~160 Mly

# Nature of the Cutoff?

Is this the "GZK cutoff"? Energy loss by collison with CMB photons?

Or do accelerators run out of steam?  $\Rightarrow$  composition becomes heavier  $\rightarrow$  Fe



data suggest change of composition from light to heavy

Not GZK cutoff?

Clarification from other messengers?

Are there GZK neutrinos?

# Limiting energy of CR sources ?



$$= 10^{20} \text{ eV}$$

