Cosmic Signals in the Antarctic Ice The IceCube Neutrino Observatory

Hermann Kolanoski Humboldt-Universität zu Berlin and DESY

Coll. Ljubljana, 16. 3. 2015

H.Kolanoski - IceCube Neutrino Observatory

What I want to tell you:

- Cosmic rays (CR)
- How to measure cosmic rays
- What we know and don't know about CR
- Neutrinos as messengers of cosmic accelerators
- Neutrino Observatory IceCube
- The IceCube Muppet Show
- Do not talk about
 e.g. exotic searches (wimps, ...)

Cosmic Rays

100 years after their discovery not yet understood

faster discharge of an electrometer with increasing height

interpreted due to radiation from space: "Höhenstrahlung"

Viktor Hess 1912

Coll. Ljubljana, 16, 3. 2015

Zwicky's proposal for the CR Origin

In Los Angeles Times, Jan. 1934

Be Scientific with OL' DOC DABBLE.

Figure 4.2: The cartoon which appeared in the Los Angeles Times of 19 January 1 strip entitled 'Be Scientific with Ol' Doc Dabble'.

"Cosmic rays are caused by exploding stars which burn with a fire equal to 100 million suns and then shrivel from ½ million mile diameters to little spheres 14 miles thick.", says Fritz Zwicky, Swiss Physicist.

... since then we are trying to prove it

Cosmic Ray Spectrum

flux (m² sr s GeV)⁻¹

Cosmic Ray Spectrum

flux (m² sr s GeV)⁻¹

What is the elemental composition?

Galactic and/or extragalactic?

Coll. Ljubljana, 16. 3. 2015

Extensive Air Showers

Use the atmosphere as calorimeter

Air Shower Detectors

Pierre Auger Observatory

Coll. Ljubljana, 16. 3. 2015

distance 1500 m size 3000 km ² energies EeV – 100 EeV
1500 m

H.Kolanoski - IceCube Neutrino Observatory

PeV to EeV

Where, how?

Origin and Physics of the knee(s)

spectrum below the knee: well known by direct measurements; above the knee: indirect measurements via air showers, difficult

Cosmic Ray Anisotropy

The orientation of the dipole moment does **not** correspond to the relative motion (~200 km/s) in the Galaxy (Compton-Getting effect)

Diffusive transport in galactic magnetic field from nearby sources?

Energy Dependence of CR Anisotropy

- Anisotropy changes in position, size
- Above 400 TeV there's indication of an increase in strength.

Large and Small Scale Anisotropies

diffusive transport from nearby sources? observed small scale (10°) structures \Rightarrow few pc distance

UHECR Results

(GZK = Greisen-Zatsepin-Kuzmin)

direction correlation with AGN?

28/84 = 33% isotropic background = 21% → <1% chance probability

Coll. Ljubljana, 16. 3. 2015

en A

Cosmic Rays, CMB Photons and Neutrinos

Cosmic Microwave Background (CMB): perfect blackbody at 2.74 K

Greisen-Kuzmin-Zatsepin (GZK) Cut-Off

$$\gamma_{cmb} p \rightarrow \Delta^+ \rightarrow \frac{n \pi^+ \rightarrow n \mu \nu}{p \pi^0 \rightarrow p \gamma \gamma}$$

CMB 2.7 K \rightarrow threshold E_p ≈ 4×10¹⁹ eV "GZK horizon" ~160 Mly

Nature of the Cutoff?

Is this the "GZK cutoff"? Energy loss by collison with CMB photons?

Or do accelerators run out of steam? \Rightarrow composition becomes heavier \rightarrow Fe

data suggest change of composition from light to heavy

Not GZK cutoff?

Clarification from other messengers?

Are there GZK neutrinos?

Where could particles possibly be accelerated?

Cosmic Accelerators

Supernova Remnants (SNR)

Fermi acceleration at shock front

1 % of the energy of all SN explosions can explain energy density of cosmic rays in galaxy (~ 0.5 MeV/m³)

However: No SNR has been clearly pinned down as source

Crab Nebula (explosion 1054)

Coll. Ljubljana, 16. 3. 2015

Twisted and Straight Paths

Absorption of γ 's by $\gamma \gamma \rightarrow e^+e^-$

Cosmic Rays, Gammas and Neutrinos

Neutrino fluxes

Cosmic neutrinos should have a hard spectrum

 $|F \sim E^{-2}|$

atmospheric v $F \sim E^{-3.7}$

How to detect cosmic high energy neutrinos?

quite difficult

cube

Absorption small \rightarrow detection probability small

 \Rightarrow large target volume

Most efficient: Cherenkov light from charged ν products

 \Rightarrow transparent

 \Rightarrow water or ice

Lake Baikal

Mediterranean Sea

Approaching the Pole these Days

ubljana, 16. 3. 2015

Arriving at Pole

Coll. Ljubljana, 16. 3. 2015

H.Kolanoski - IceCube Neutrino Observatory

IceCube Neutrino Observatory

The Drill Camp

Coll. Ljubljana, 16. 3. 2015

Fas

.... 2450 m deep

Coll. Ljubljana, 16. 3. 2015

When the Season is over

The Last Flight at the End of the Season

Detection of High Energy Neutrinos

Detecting a Neutrino

Coll. Ljubljana, 16. 3. 2015

Particle Signatures

Coll. Ljubljana, 16. 3. 2015

H.Kolanoski - IceCube Neutrino Observatory

Search for Diffuse Astrophysical Neutrino Flux Background: Atmospheric Neutrinos

Atmos. v's: background for one – Signal for the other **Neutrino Oscillation**

Neutrino Oscillation

Ultimate goal: measure mass hierarchy with a densely instrumented extension: PINGU

Search for Pointsources: The Method

background: atmospheric v

Search for event excess within 2° - 3°

- somewhere in the Northern sky
- from list of candidate sources

The Statistics Problem

If you search long enough you will for sure get an excess at some point

Already for about 30 search windows the probability to see 7 or more events in any window is about 60% for background only.

Example:

Expect 3 events background in a search window, but see 7. How significant is this?

Significance is determined by ~10000-fold simulation of measurement

Point Source Search 2008-2011

Improving Statistical Significance

- pre-defined source positions
- pre-defined time-window
- "stacking" of pre-defined sources

"Pre-Definition" with **"multi-messenger"** information of optical, gamma, X-ray, radio telescopes ...

Coll. Ljubljana, 16. 3. 2015

Gamma-ray bursts (GRB)

- Intense flashes of gamma rays
- Duration some seconds
- highly-relativistic jet ('fireball')

Search for neutrinos which are in time and direction consistent with GRB

GCN: The Gamma-ray Coordinates Network

Coll. Ljubljana, 16. 3. 2015

www.nasa.gov/swif

Are GRBs the main sources of Cosmic Rays?

225 GRB ... no coincidences observed

Standard Fireball Models excluded [Nature 484 (2012) 351]

Extremly High Energy (EHE) Neutrinos

$$\mathsf{GZK} \quad \gamma_{cmb} p \to \Delta^+ \to \frac{n \pi^+ \to n \mu \nu}{p \pi^0 \to p \gamma \gamma}$$

threshold ~ $5 \times 10^{19} \text{ eV}$

Search for cosmogenic neutrinos with 2010-2012 data.

- Two shower type events found in 616 days of IceCube observations.
- Neutrino energies could be higher than deposited energies, if neutral current interaction.

Coll. Ljubljana, 16. 3. 2015

The Muppet Show

A theoreticians view (Francis Halzen, IceCube PI):

A detection of 1 neutrino is interesting ...

2 is evidence ...

... and 3 is a spectrum!

Coll. Ljubljana, 16. 3. 2015

Follow-up Search for contained and semi-contained events

- find contained events below the energy threshold of the "Bert-and-Ernie" analysis
 - same dataset, 662 days of livetime
- Use outer IceCube layers as incoming track veto
 - Additional atmospheric muon veto
 - Sensitive to all flavors in region above ~ 60TeV
 - Muon background can be estimated from data

Some example events

Excess of HE Starting Tracks

Starting events depositing >60 TeV using 3 years of data, events up to ~2 PeV

Global Fit to 6 Different Measurements

Simplest model: flux $\Phi_{\nu} = \phi \cdot \left(\frac{E}{100 \text{ TeV}}\right)^{-1}$

Results:

 $\gamma = 2.50 \pm 0.09$ $\phi = (6.7^{+1.1}_{-1.2}) \cdot 10^{-18} \,\mathrm{GeV^{-1}s^{-1}sr^{-1}cm^{-2}}$

Flavor ratio compatible with

 $\nu_e: \nu_\mu: \nu_\tau = 1:1:1$

"prompt" < 2 × ERS

Coll. Ljubljana, 16. 3. 2015

Blazars or GRB as Sources?

Anything new down there? Quite interesting. Let's keep looking

H.Kolanoski - IceCube Neutrino Observatory

Illustrated by Guy Billou

CONCLUSION

"Alles Wissen und alle Vermehrung unseres Wissens endet nicht mit einem Schlußpunkt, sondern mit Fragezeichen"

Hermann Hesse .

... imagine Sisyphos to be happy

»... il faut imaginer Sisyphe heureux« A.Camus

The IceCube Collaboration

Canada University of Alberta-Edmonton University of Toronto

USA

Clark Atlanta University **Drexel University** Georgia Institute of Technology Lawrence Berkeley National Laboratory Michigan State University **Ohio State University** Pennsylvania State University South Dakota School of Mines & Technology Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison-University of Wisconsin-River Falls Yale University

Chiba University, Japan

Niels Bohr Institutet.

Denmark

Sungkyunkwan University, Korea

University of Oxford, UK -

Belgium Université Libre de Bruxelles Université de Mons Universiteit Gent Vrije Universiteit Brussel Sweden Stockholms universitet Uppsala universitet

Germany

Deutsches Elektronen-Synchrotron Friedrich-Alexander-Universität Erlangen-Nürnberg Humboldt-Universität zu Berlin Ruhr-Universität Bochum RWTH Aachen Technische Universität München Technische Universität Dortmund Universität Mainz Universität Wuppertal

Université de Genève, Switzerland

University of Adelaide, Australia

University of Canterbury, New Zealand

Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF)

German Research Foundation (DFG)

Deutsches Elektronen-Synchrotron (DESY) Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR)

University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)