Origin of Cosmic Rays

Part 2: Neutrinos as Cosmic Ray messengers Lecture at the J. Stefan Institute Ljubljana within the course: 'Advanced particle detectors and data analysis'

Hermann Kolanoski Humboldt-Universität zu Berlin and DESY

Ljubljana, March 2015

H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

What I want to tell you:

- Candidates for cosmic ray accelerators
- Neutrinos as messengers for CR sources
- HE Neutrino telescopes
- Neutrino detection
- Point source searches
- EHE neutrinos and the Muppet Show
- Cosmic signals from contained events

The "non-thermal Universe"

Where could particles possibly be accelerated? Hillas diagram

Active Galactic Nuclei

Origin of the HE cosmic radiation?

Twisted and Straight Paths

Neutrino fluxes

Cosmic neutrinos should have a hard spectrum

 $F \sim E^{-2}$

atmospheric v $F \sim E^{-3.7}$

Cosmic Rays, Gammas and Neutrinos

Three Pillars of HE-Astroparticle Physics

Ljubljana, March 2015

H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

How to detect cosmic high energy neutrinos?

quite difficult

Absorption small \rightarrow detection probability small

Need something

large
transparent

 \Rightarrow water or ice

Moisej Markov

Bruno Pontecorvo

М.Марков, **1960**:

"We propose to install **detectors deep in a lake or in the sea** and to determine the direction of charged particles with the help of **Cherenkov radiation**."

ljana, March 2015

DOM – Digital Optical Module

pressure glas sphere

junction cable

harness

elektronics: high voltage, digitalization, data transfer

photomultiplier = light sensor

Hot Water Drilling

IceCube EHWD operation:

entire drill camp setup, including generators, heater plants, fuel systems, and support workshops.

2 drill towers connect to central plants and leapfrog over holes.

Ljubljana, March 2015

Deployment

99% of DOMs survive deployment and freeze-in

Ljubljana, March 2015

Detection of High Energy Neutrinos

Detection of a Neutrino

Zenith 2.018 Azimuth 2.81187

Particle Signatures

Ljubljana, March 2015

Neutrino Signals in IceCube

Ljubljana, March 2015

- Only v_µ CC interactions
- Angular resolution: < 1°
- Energy measurement: only dE/dx
 - µ might have lost significant fraction of energy before entering the detector
- Effective volume larger than instrumented volume

Ljubljana, March 2015

Muon Energy Loss

$$-\frac{dE}{dx} = a(E) + b(E) E$$

b(E)E = stochastic losses due to bremsstrahlung

$$a(E_k^\mu)=b(E_k^\mu)\,E_k^\mu$$

critical energy

~E \rightarrow allows energy reconstruction of muons, not of the neutrinos!

H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

Shower-Type Event (Cascade)

> $v_e + v_\mu NC + v_\tau$ interactions

- > Angular resolution: ≥10°
- > Energy resolution: 15%
- > Effective volume smaller than instrumented volume

Angular & energy resolution for shower-type events.

Ljubljana, March 2015

H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

Search for Diffuse Astrophysical Neutrino Flux Background: Atmospheric Neutrinos

Search for Pointsources: The Method

background: atmospheric v

Search for event excess within 2° - 3°

- somewhere in the Northern sky
- from list of candidate sources

The Statistics Problem

If you serach long enough we will for sure get an exces at some point

Already for about 30 search windows the probability to see 7 or more events in any window is about 60% for background only.

Example:

Expect 3 events background in a search window, but see 7. How significant is this?

Significance is determined by ~10000-fold simulation of measurement

Ljubljana, March 2015

Point Source Search 2008-2011

IC86+79+59+49

Ljubljana, March 2015

H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

Improving Statistical Significance

- pre-defined source positions
- pre-defined time-window
- "stacking" of pre-defined sources

"Pre-Definition" with "multi-messenger" information of optical, gamma, X-ray, radio telescopes

Gamma-ray bursts

Swift Ulysses Integral HETE HETE TEV site radio site radio site ic Rays' - II: Neutrinos

Search for neutrinos which are in time and direction consistent with GRB

GRB Model

- Gamma Ray Bursts (GRBs) release $\sim 10^{51} 10^{54} \text{ erg} \times \Omega/4\pi$ where Ω is the solid angle of beamed emission.
- If nucleons are present and accelerated with similar efficiency to electrons, then GRBs could account for the observed ultra high energy cosmic rays.
- \bullet If nucleons present, interactions with γ will yield neutrinos, for example via:

 $p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+; \qquad \pi^+ \rightarrow \mu^+ + \nu_\mu; \qquad \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu.$

• Therefore, observation of GRB-neutrino coincidence would lend support to the hypothesis that GRBs produce high energy cosmic rays.

Ljubljana, March 2015

Are GRBs the main sources of Cosmic Rays?

225 GRB ... no coincidences observed

Standard Fireball Models excluded [Nature 484 (2012) 351]

EHE Neutrinos

(extremly high energy)

Search for cosmogenic neutrinos with 2010-2012 data.

- Two shower type events found in 616 days of IceCube observations.
- Neutrino energies could be higher than deposited energies, if neutral current interaction.

Ljubljana, March 2015

Search for cosmogenic neutrinos with 2010-2012 data.

- > Search targeted for multi-PeV to EeV events expected from cosmogenic neutrinos.
- > PeV events found at the brightness threshold for this analysis.
- > 2.8 σ above expectations from atmospheric background.

The Muppet Show

A theoreticians view (Francis Halzen, IceCube PI) :

A detection of 1 neutrino is interesting ...

2 is evidence ...

... and 3 is a spectrum!

Ljubljana, March 2015

Things we wanted to learn

- Isolated events or tail of spectrum?
- Spectral slope/cutoff
- Flavor composition (ratio tracks/cascades)
- Where do they come from?
- Astrophysical or air-shower physics (e.g. charm)?
- \rightarrow Needed more statistics to answer all of these

Alexander Kappes | Seminar, APC, Paris | 14.06.2013 | 44

Search for contained and semi-contained events.

- > Designed to find contained events below the energy threshold of the "Bert-and-Ernie" analysis
 - same dataset
 - 662 days of livetime
- > Use outer IceCube layers as incoming track veto
 - Additional atmospheric muon veto
 - Sensitive to all flavors in region above ~ 60TeV
 - Muon background can be estimated from data

Some example events

Excess of HE Starting Tracks

Starting events depositing >60 TeV using 3 years of data, events up to ~2 PeV

Northern Sky Through-going Events

- (Paper in internal review) Analysis of through-going events from the northern sky using 2 years of data—v_µ charged current only, >1 TeV
- Excess over atmospheric background of 3.7σ
- Signal looks similar in different channels and different parts of the sky

Global Fit to 6 Different Measurements

Simplest model: flux $\Phi_{\nu} = \phi \cdot \left(\frac{E}{100 \text{ TeV}}\right)^{-1}$

Results:

 $\gamma = 2.50 \pm 0.09$ $\phi = (6.7^{+1.1}_{-1.2}) \cdot 10^{-18} \,\mathrm{GeV^{-1}s^{-1}sr^{-1}cm^{-2}}$

Flavor ratio compatible with

 $\nu_e: \nu_\mu: \nu_\tau = 1:1:1$

", prompt" $< 2 \times ERS$

H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

Blazars or GRB as Sources?

