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Example: selection of B® > K° J/y events

Selection of events
of the type

BO > KO J/y
KO > mmt
Wy > wpt




Measurement of CP violation - continued
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K Flavor tagging

Az~200um

Determine At from Az = B~ycAt:

4 clock start: resolution on tag side 140 um (e = 91%) - charm decays
4 clock stop: resolution on CP side 75 um (e = 92%)

N.B. typically Az = Byerg = 200 pm



Search for unstable particles that
s decayed close to the production point

How do we reconstruct final states that decayed to two stable
particles?

From the measured tracks calculate the invariant mass of the
system (i= 1,2):

Me* = | EY ~(X B¢

The candidates for the X=>12 decay show up as a peak in the
distribution on (mostly combinatorial) background.

The name of the game: have as little background under the peak
as possible without loosing the events in the peak (=reduce
background and have a small peak width).

Peter Krizan, Ljubljana



How do we know it was

precisely this reaction? . .

BO > KO J/y ]
KOs > |

J/\Tj > detect 10000 - ]
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Also important: other charmonium states
(in addition to J/vy), e.g. B® 2> KO y(2S)

Events/(5 MaV/c?®)

3.20

360
Dilepton mass (GeVic')

(28) = ptp=,ete”

ov = 12.1GeV /{_-}3

I I I I I | I I I | I I I
7, Vield: 8611, 165,
1 Mean: 414.9.£.0.5 MeVic’
7 Widh: 8.7 0.4 MeVic?
1,5 Vield: 1337, 120, ]
1o Mean: 460.6 MeVic” (Constrained)
1p Wicth: 9.6 MeVle® (Constrained) 1

0.30 0.40 (.50 0.60
IV

AT
[ty [""1I+I- '-.Ge ik )

/‘\.{'1"' )\_{':} — ’"}T;’f ?.‘:‘l’!‘-‘.’:

oAy = 1.0GeV /(_:2



Also important: K% decays to
neutral pions
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e Reconstruction B meson decays

Reconstructing B meson decay at Y(4s):
Improve the resolution by taking into account that only
two B mesons are produced in an Y(4s) decay.
In the expression for the invariant mass use the energy
of the beam in cms (1/2 total energy in cms) instead of
the reconstructed energy (which involves information
on particle identification)

- beam constrained mass M.

M, = (Ec 12 =5,

Peter Krizan, Ljubljana



Example 2: CP asymmetry measurement B -> w'rnt-
Extraction of a(¢p,) =

Br(B-n*n)= 0.48 10>
-> Rare decay, have to fight against many background sources.

Reconstructing rare B meson decays at Y(4s): use two variables,
beam constrained mass M,.and energy diference AE

Use event topology parameters to suppress the continuum
backgrounds.

Use particle identification to reduce the background from 4x more
copious B » K*mn~ decays.

Exploit the very good momentum resolution to kinematically separate
the remaining B -+ K*r~ contribution.
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Reconstruction of rare B meson decays

Reconstructing rare B meson
decays at Y(4s): use two
variables,

beam constrained mass M,
and

energy diference AE

AE=) E,—E,/2

M, = (Eq, 12" =B,
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Continuum suppression

alete™ — hadrons] (nh)

T(18) .

] Continuum

continuum Jet-like €
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To suppress: use event BB

shape variables spherical  sign
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Peter Krizan, Ljubljana



Continuum suppression

ete— gg“continuum” (~3x BB)

To suppress it use:

RR
eevent shape variables 199 0.86
ecvent axis direction
Combine to a likelihood ratio: T
KLR= 1 iB ] B e i |
oem KLR
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B 2 n* © decays

N 'KLR > 0.86 (high qq suppression) Ny " KLR < 0.86 (low qq suppression)
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Advanced event selection methods

Problem
Neural nets
Decision trees / Boosted decision trees (BDT)
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Problem

A

Suppose for each event we measure a set of numbers X=(x,,...,x,)
X =jetp.
X, = Mmissing energy

x, = particle 1.d. measure, ...

X follows some n-dimensional joint probability density, which
depends on the type of event produced, 1.e., was it pp—tt, pp—&8,...

X’: A B 'y p('i': \
A ‘%‘;::;‘J‘ . / E.g. hypotheses (class labels) H , H , ...
. o, LM - «
: “é?:-.-:'::‘f‘:’*i“ ‘ Often simply “signal”, “background”
. . ::,.?'::’.“‘:“:‘ ‘4‘ .~
hE We want to separate (classity) the
4 . . event types in a way that exploits the
- X; information carried in many variables.
p(X[H,) ’ y
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Finding an optimal decision boundary

Maybe select events with “cuts’:
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Goal of multivariate analysis is to do this in an “optimal” way.
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Test statistics

The decision boundary 1s a surface in the n-dimensional space of
input variables, e.g., y(X)=const.

We can treat the y(x) as a scalar test statistic or discriminating
function, and try to define this function so that its distribution has the

maximum possible separation between the event types:

2 T T T T
The decision boundary Y cut
is now effectively a single T s & e N
cut on y(x), dividing
: 1, o [\ .
X-space into two rOlHY) I\ . s
regions: o YR f,/ \ | J(ylH,
. o\ -
R (accept H ) ;‘. \R_ / \
R (reject H ) e 1 2 s 1 s
y{x)

14
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Efficiency and purity in event selection

Efficiency and purity are tightly coupled!
Two examples:

process type 0 (signal) type 1 (background) eff. vs fake probability
(for Gaussian distributions)
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We can characterize the quality of a classification procedure

with the receiver operating characteristic (ROC curve)

1.0 -~
L better
.. good
background rejection -
= | — background eff.
0.0 >
0.0 1.0

signal efficiency
Area under curve: measure of the selection quality



Linear test statistic
Ansatz:  p(%)=)_ w,.xf:M_bek’
i=1

Choose the parameters w, ..., w, so that the pdfs f(y[s). ' (y[b)

have maximum ‘separation’. We want:

T
Fy z
large distance between ¢
mean values, small widths

b -z

S

- Fisher: maximize




[.1inear decision boundaries

A linear decision boundary is only
optimal when both classes follow
multivariate Gaussians with equal
covariances and different means.

For some other cases a linear

boundary is almost useless.




Nonlinear transformation of inputs

We can try to find a transformation, Xj,---, X,2 @ (X),....9,(¥)
so that the transformed “feature space” variables can be separated

better by a linear boundary:

» Here, guess fixed
¢ =tan " (x,/x)) — basis functions

2 2 (no free parameters)
(P2 — xl _|_ x2
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Neural nets

n
Define the discriminant using y(X)=/ Wo""z W, X,
i=1
where /1 1s a nonlinear, monotonic activation function; we can use

e.g. the logistic sigmoid A(x)=(14+e )"

X
If the activation function is monotonic,

the resulting y(x) is equivalent to the

original linear discriminant. This is an O y(X)
example of a “generalized linear model”
called the single layer perceptron. T

AII

: output node

mput layer

lan Cavviran MNMiiltivrariata Qfatictical Mathade 1319 Dartircla Dot ~o



The multilayer perceptron

Now use this idea to define not only the output y(x), but also the set of
transformed inputs @, (X),...,, (X) that form a “hidden layer’:

Superscript for weights indicates  x,
layer number

\‘ n
P, (X)=h|wy'+ 2 w,'x,
J=1
7 ‘YII
=\ _ (2) (2) =
y(X)=h|wy "‘Z Wl,(PJ(x) . f hidden  output
j=1 mputs

layer ¢.

This is the multilayer perceptron, our basic neural network model;
straightforward to generalize to multiple hidden layers.
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Network training

The type of each training event is known, 1.e., for event a we have:

X,=(x,...,x,) the input variables, and

t =0.1 a numerical label for event type (“target value™)

Let w denote the set of all of the weights of the network. We can
determine their optimal values by minimizing a sum-of-squares
“error function”

N N
1 N
E(w)=2 3 [¥(%,w)=1,,=3 E,(w)
a=1 a=1
X

Contribution to error function
from each event
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Bias — variance trade-off

For a finite amount of training data, an increasing number of network
parameters (layers, nodes) means that the estimates of these parameters
have increasingly large statistical errors (variance, overtraining).

Having too few parameters doesn't allow the network to exploit the
existing nonlinearities, i.e., it has a bias.

high variance high bias | good trade-off

Glen Cowan Multivariate Statistical Methods in Particle Physics
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Neural network example from LEP

B2 oz
ois b 018
as P e o
ows | ’_‘1_::[:1 11 5,08
o et T 1 a
as 1
leg{Ys.)
o
kis Lo
n‘f‘
nes j 4 5
o T W
o a8 K
'°g(“iu'=/
B2 0z
0.15 - 015
o f IJ_ 0
00 { | .00

o oS 1
Log{Aplonarily)

One of the early examples
in particle physics
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(often 4 well separated hadron jets)

Background: e'e” — qqgg (4 less well separated hadron jets)

«— 1nput variables based on jet
structure, event shape, ...
none by itself gives much separation.

Neural network output does better...
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(Garrido, Juste and Martinez, ALEPH 96-144)
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Intermediate Nodes

Signal Leaf Nodes

N=343.000000

S/(S+B)=0.009

Decision Tree (DT) example

N=1000.000000
S/(S+B)=0.500
y< 0.85
N=420.000000
S/(S+B)=0.055
y<1.18

N=77.000000
N=92.000000

S/{(S+B)=0.260

S/(S+B)=0.043
x<0.649

N=44.000000 N=33.000000

S/{S+B)=0.000 S/{S+B)=0.606

Decision Tree No.: 0

N=580.000000

S/(S+B)=0.822

x< 1.06

N=488.000000

S/(S+B)=0.969
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Decision Tree (DT) example:
specialized trees

Intermediate Nodes
Signal Leaf Nodes

Backgr. Leaf Nodes

N=1000.000000
S/(S+B)=0.355
y<0.604

N=1000.000000
S/(S+B)=0.376

Decision Tree No.: 2

Backgr. Leaf Nodes

N=751.979000
S/(S+B)=0.258
2<0.527

N=408.142000
S/(S+B)=0.701
x<0.819

N=248.021000
S/(S+B)=0.734
x<1.52

S/(S+B)=0.117
y<0.677

Ne626.079000

SI(SB)=0.175

S/(S+B)=0.410

N=1000.000000
S/(S+B)=0.488
x< 1.33

Intermediate Nodes
Signal Leaf Nodes
Backgr. Leaf Nodes

.,,mmdhm Nodes N=1000.000000 -_Del:islon Tree No.: 4
: S/(S+B)=0.539

Backgr. Leaf Nodes N=633.983000 N=366.017000

N=99.912600

N=900.087000
SI(S+B)=0.537
y<-0.133

S/(S+B)=0.044
S/(S+B)=0.435 S/(S+B)=0.719

x>-0.792

S/(S+B)=0.011
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Boosted Decision Tree (

e

@ Train classifier T{ on N events

@ Train 7> on new N-sample, half of which mis
@ Build T3 on events where 77 and T» disagree
@ Boosted classifier: MajorityVote( T1, T2, T3)

BDT)

classified by T3
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