

Example 3: fixed target and forward spectrometer experiments

Peter Križan

Advance particle detectors and data analysis

Particle physics experiments

Accelerate elementary particles, let them collide \rightarrow energy released in the collision is converted into mass of new particles, some of which are unstable

Two ways how to do it: Fixed target experiments

Experimental aparatus

Detector form: symmetric for colliders with symmetric energy beams; extended in the boost direction for an asymmetric collider; very forward oriented in fixed target experiments.

Example of a fixed target experiment: HERA-B

RICH: multianode PMTs as photosensors

Multianode PMTs with metal foil dynodes and 2x2, 4x4 or 8x8 anodes Hamamatsu R5900 (and follow up types 7600, 8500)

HERA-B RICH

← Little noise, ~30 photons

Typical event

per ring

 \rightarrow

Importance of PID

 K^+K^- invariant mass

 For all pairs of oppositely charged particles

 For those that were identified as kaons

The $\phi \rightarrow K^+K^-$ decay only becomes visible after particle identification is taken into account.

B physics at LHC: b-production in pp collisions at LHC

 Pairs of bb quarks are mostly produced in the forward/backward direction:

$$\sigma_{b\bar{b}} = 500 \mu b$$

 $10^{12} b\overline{b}$ produced per year

Figure 2.1: Polar angles of the b- and \overline{b} -hadrons calculated by the PYTHIA event generator.

LHCb

LHCb Collaboration

Vertex locator - VELO

Vertex detector Key element surrounding the IP:

Measure the position of the primary and the $B_{d,s}$ vertices Used in L1 trigger.

Vertex locator

- 21 pairs of silicon strip detectors arrange in two retractable halves:
 - Strips with an R- ϕ geometry:
 - R strip pitch: 40-102 µm
 - φ strip pitch: 36-97 µm
 - 172k channels.
- Operated:
 - In vacuum, separated from beam vacuum by an Al foil
 - Close to the beam line (7 mm)
 - Radiation ≤ 1.5×10¹⁴ n_{eq}/cm² per year
 - Cooled at -5 °C

Key elements to find tracks and to measure their momentum.

Tracking system

- Trigger Tracker:
 - Microstrip silicon detector
 - 144k channels
- Three T stations:
 - Inner tracker:
 - Microstrip Silicon detector
 - 130k channels
 - Outer tracker:
 - Straw tubes (5 mm)
 - 56k channels

Key elements to identify pions and kaons in the momentum range $p \in [2, 100]$ GeV/c

LHCb RICHes

RICH system divided into two detectors equipped with 3 radiators to cover the full acceptance and momentum range:

Peter Križan, Ljubljana

Particle ID with RICH

Efficient particle ID of π , K, p essential for selecting rare beauty and charm decays

K-identification and π -misidentification efficiencies vs. particle momentum

Calorimeters

LHCb calorimeters

• System subdivided into 3 parts:

Scintillating Pad Detector (SPD) and Preshower:

• Two layers of scintillator pads separated by a 1.5cm lead converter

Electromagnetic Calorimeter (ECAL):

- Shashlik types,
- Lead+ scintillator tiles
- 25 X₀

Hadronic calorimeter (HCAL):

- Iron + scintillator tiles
- 5.6 λ_I
- A total of 19k channels readout by Wave Length Shifter fibres connected to PMs or MaPMTs.

Particle ID with the Muon System

 $\epsilon(K{\rightarrow}\mu)=(1.67\pm0.06)\%$

Peter Križan, Ljubljana

10000 20000 30000 40000 50000 Momentum (MeV/c)

Triggers

Level-0:

- fully synchronous custom electronics at 40 MHz
 - 11 MHz of visible interactions reduced to max. 1 MHz
 - select single objects with large $p_T(E_T)$, typically $p_T(\mu) > 1$ GeV/c and $E_T(h,e,\gamma,\pi^0) > 3-4$ GeV

High-level trigger

- Farm of 1500 multi-processor boxes
- Stage 1: add tracking info, impact parameter cuts
- Stage 2: full reconstruction + selections
- Output:
 - $\sim 1 \text{ kHz charm}$, $\sim 1 \text{ kHz B}$, $\sim 1 \text{ kHz others}$

	Typical efficiencies
B decays with μμ	70–90%
Fully hadronic B decays	20-45%
Fully hadronic charm decays	10–20%

Time dependent measurements at LHCb

- The proper time of the signal B decay is measured via:
 - the position of the primary and secondary vertexes;
 - the momentum of the signal B state from its decay products.

Peter Križan, Ljubljana

Flavour Tagging

Opposite side:

- e, µ from semileptonic b decays;
- K[±] from b decays chain;
- Inclusive vertex charge.

Same side:

Effective tagging efficiencies vary between 3% and 9% depending on the final state.

• K^{\pm} from fragmentation accompanying B_s meson.

N.B. Effective tagging efficiencies is >30% at B factories, ~2% at CDF/D0

 B_s mixing: $B_s \leftarrow \rightarrow$ anti- B_s

Excellent timing precision: B_s turn into anti- B_s in 0.3 ps, 3 10¹² per second