

Statistics – a very short course

Analysis of data

If we have N independent (unbiased) measurements x_i of some unknown quantity μ with a common, but unknown, variance σ^2 , then



are unbiased estimates of μ and $\sigma^2.$ The uncertainties of these estimates are

- for μ : $\sigma/sqrt(N)$

- for σ : $\sigma/sqrt(2N)$ (for Gaussian distributed x_i and large N)

Analysis of data 2: unbinned likelihood fit

Assume now that we have N independent (unbiased) measurements x_i that come from a probability density function (p.d.f.) $f(x; \theta)$, where $\theta = (\theta_1, \dots, \theta_m)$ is a set of m parameters whose values are unknown. The method of maximum likelihood takes the estimators θ to be those values of θ that maximize the likelihood function,

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{N} f(x_i; \boldsymbol{\theta}) .$$

It is easier to maximize $\ln L$ (same minimum, but product \rightarrow sum)

- Also from practical reasons: max $(lnL) \rightarrow min(-lnL)$ (minimisation algorithms)
- \rightarrow Solve a set of m equations

$$\frac{\partial \ln L}{\partial \theta_i} = 0 , \qquad i = 1, \dots, n .$$

The errors and correlations between parameters $\theta = (\theta_1, \dots, \theta_m)$ can be found from the inverse of the covariance matrix

$$(\widehat{V}^{-1})_{ij} = -\left. \frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j} \right|_{\widehat{\theta}}$$

The variance σ^2 on the paramter θ_i is V_{ii}

Analysis of data 4: binned likelihood fit

If the sample is large (large n), data can be grouped in a histogram. The content of each bin, n_i , is distributed according to the Poisson distribution with mean $v_i(\theta)$,

$$f(v_i(\theta), n_i) = v_i(\theta)^{n_i} \exp(-v_i(\theta)) / n_i!$$

The parameters θ are determined by maximizing a properly normalized likelihood function

$$-2\ln\lambda(\boldsymbol{\theta}) = 2\sum_{i=1}^{N} \left[\nu_i(\boldsymbol{\theta}) - n_i + n_i\ln\frac{n_i}{\nu_i(\boldsymbol{\theta})}\right]$$

In the limit of zero bin width, maximizing this expression is equivalent to maximizing the unbinned likelihood function.

N.B. In the expression above we have assumed n_i to be large such that the Stirling approximation can be used, ln n! ~ n ln n - n

Analysis of data 5: least squares method

If we have N independent measurements of variable y_i at points x_i , and if y_i are Gaussian distributed around a mean $F(x_i, \theta)$ with variance σ_i^2 , the log likelihood function yields

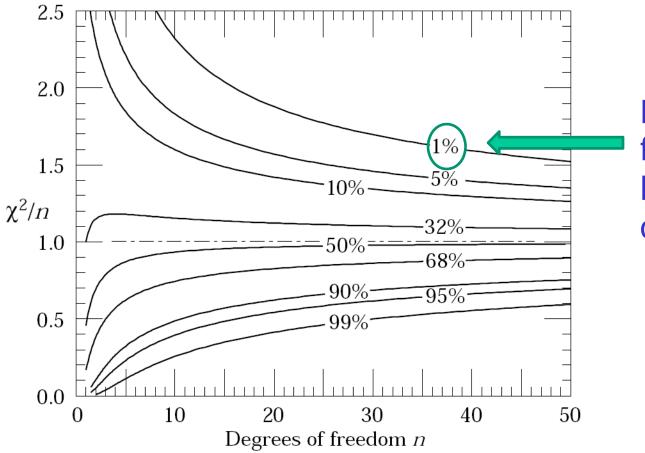
$$\chi^2(\boldsymbol{\theta}) = -2\ln L(\boldsymbol{\theta}) + \text{ constant } = \sum_{i=1}^N \frac{(y_i - F(x_i; \boldsymbol{\theta}))^2}{\sigma_i^2}$$

and the parameters θ are determined by minimizing this expression.

This weighted sum of squares can be used in a general case of a non-Gaussian distribution \rightarrow Least squares method

Analysis of data 6: least squares method

The value of χ^2 at the minimum is an indication of the goodness of fit. The mean of χ^2 should be roughly equal to the number of degrees of freedom, n = N-m, where m is the number of parameters. Popular use: for each fit to the data quote χ^2/n



Probability that the fit would give χ^2/n bigger than the observed value

