

Univerza v Ljubljani

Very forward region in Belle: physics impact and opportunities

Peter Križan University of Ljubljana and J. Stefan Institute

ILC-FCAL Collaboration Meeting, Beograd, Sept. 23, 2008

- •Belle: highlights and plans
- Processes with missing particles
- •Impact of instrumenting the forward region
- Summary

B factory physics program

B factory main task: measure CP violation in the system of B mesons

specifically: various measurements of complex elements of Cabbibo-Kobayashi-Maskawa matrix

CKM matrix is unitary

deviations could signal processes not included in SM

3

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\bar{\rho}-i\bar{\eta}) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\bar{\rho}-i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix}^{1/2} \int_{0.5}^{1/2} \int_{0.5}^{1/2}$$

Unitarity triangle

Unitarity condition:

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

 \rightarrow Triangle in the complex plane

Big Questions: Are determinations of <u>angles</u> consistent with determinations of the <u>sides</u> of the triangle? Are angle determinations from loop and tree decays consistent?

The KEKB collider

KEKB collider: luminosity record

Accumulated 852 fb⁻¹ $\rightarrow \sim 900$ M BB-pairs

September 2

raninfo ver.1.57 Exo3 Ran1 - Exo65 Ran1270 BELLE LEVEL latest: day is not 24 hours

CP violation in the B system

CP violation in B system: from the discovery in $B^0 \rightarrow J/\Psi K_s$ decays (2001) to a precision measurement (2006)

COL JUL DOM

sin2
$$\phi_1$$
 = sin2 β from b \rightarrow ccs
535 M BB pairs

 $sin2\phi_1 = 0.642 \pm 0.031$ (stat) ± 0.017 (syst)

All measurements combined...

Constraints from measurements of angles and sides of the unitarity triangle \rightarrow

(appart from a small inconsistency in V_{ub})

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$) by fully reconstructing the other B meson
- Observation of D mixing
- CP violation in $b \rightarrow s$ transitions: probe for new sources of CPV
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$ has become a powerfull tool to search for physics beyond SM.
- Observation of new hadrons

Purely leptonic decay $B \rightarrow \tau v$

B

- Challenge: B decay with at least two neutrinos
- Proceeds via W annihilation in the SM.
- Branching fraction

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

• Provide information of $f_B |V_{ub}|$

$$- |V_{ub}| \text{ from } B \rightarrow X_u | v \implies f_B$$

Cf) Lattice

- $Br(B \rightarrow \tau \nu) / \Delta m_d \qquad \Longrightarrow |V_{ub}| / |V_{td}|$
- Limits on charged Higgs

W

- Fully reconstruct one of the B's to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

 \rightarrow Offline B meson beam!

Powerful tool for B decays with neutrinos

Event candidate $B^{-} \rightarrow \tau^{-} \nu_{\tau}$

 $B \rightarrow \tau \nu$

PRL,

τ decay modes

 $\tau^- \rightarrow \mu^- \nu \overline{\nu}, e^- \nu \overline{\nu}$

$$\tau^- \to \pi^- \nu, \, \pi^- \pi^0 \nu, \, \pi^- \pi^+ \pi^- \nu$$

- Cover 81% of τ decays
- Efficiency 15.8%
- Event selection
 - Main discriminant: extra neutral ECL energy
- Fit to $E_{residual} \rightarrow 17.2^{+5.3}_{-4.7}$ signal events.

 \rightarrow 3.5 σ significance including systematics

Super
Super
West for BSM
$$B \rightarrow \tau v_{\tau}$$

$$BF(B^{+} \rightarrow \tau^{+}v_{\tau}) = (1.79^{+0.56+0.46}_{-0.49-0.51}) \times 10^{-4}$$

$$\Gamma^{SM}(B^{+} \rightarrow \ell^{+}v) = \frac{G_{F}^{2}}{8\pi} |V_{ub}|^{2} f_{B}^{2} m_{B} m_{\ell}^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{B}^{2}}\right)$$

$$\Rightarrow \text{ Product of B meson decay constant } f_{B} \text{ and CKM matrix element}$$

$$|V_{ub}| \qquad f_{B} \times V_{ub} = (10.1^{+1.6+1.3}_{-1.4-1.4}) \times 10^{-4} \text{ GeV}$$

Using $|V_{ub}| = (4.39 \pm 0.33) \times 10^{-3}$ from HFAG

$$f_B = 229^{+36+34}_{-31-37} MeV$$

First measurement of f_{B} !

 $f_B = (216 \pm 22)$ MeV from unquenched lattice calculation

[HPQCD, Phys. Rev. Lett. 95, 212001 (2005)]

KEKB Charged Higgs contribution to $B \rightarrow \tau v$

Super

SM: B $(B \rightarrow \tau v)$ = $(0.78 + 0.09) \times 10^{-4}$ (CKM fitter 2008 prediction)

50

0

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

If the theoretical prediction is taken for f_B \rightarrow limit on charged Higgs mass vs. tan β

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

$$\frac{\tau v}{v} = \left(1 - \frac{m_B^2}{m^2} \tan^2 \beta\right)^2 \qquad u$$

LEP Excluded (95% C.L.)

40

 $\tan \beta$

60

20

80

100

tan B

- There is a good chance to see new phenomena;
 - CPV in B decays from the new physics (non KM).
 - Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constraint (if not found) new physics models.
- Even in the worst case scenario (such as MFV), $B \rightarrow \tau v$, $D\tau v$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be an unique way to search for the TeV scale physics.

Super B Factory Motivation 2

• A lesson from history: the top quark

• There are many more topics: CPV in charm, new hadrons, searches for light dark matter, ...

KEKB Upgrade Plan : Super-B Factory at KEK

- Asymmetric energy e⁺e⁻ collider at E_{CM}=m(Υ(4S)) to be realized by upgrading the existing KEKB collider.
- Initial target: 10×higher luminosity $\cong 2 \times 10^{35}$ /cm²/sec after 3 year shutdown $\rightarrow 2 \times 10^{9} BB$ and $\tau^{+}\tau^{-}$ per yr.
- Final goal: $L=8\times10^{35}/\text{cm}^2/\text{sec}$ and $\int L dt = 50 \text{ ab}^{-1}$

Luminosity gain and upgrade items (preliminary)

3 years shutdown

Item	Gain	Purpose	
beam pipe	x 1.5	high current, short bunch, electron cloud	
IR($\beta^*_{x/y}$ =20cm/3 mm)	x 1.5	small beam size at IP	
low emittance(12 nm) & $v_x \rightarrow 0.5$	x 1.3	mitigate nonlinear effects with beam-beam	
crab crossing	x 2	mitigate nonlinear effects with beam-beam	
RF/infrastructure	x 3	high current	
DR/e ⁺ source	x 1.5	low β^* injection, improve e ⁺ injection	
charge switch	x ?	electron cloud, lower e ⁺ current	

Requirements for the Super B detector

Critical issues at L= 4 x 10^{35} /cm²/sec

- Higher background (×20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Possible solution:

- Replace inner layers of the vertex detector with a silicon striplet or pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter by pure Csl.
- Faster readout electronics and computing system.

Belle upgrade for the Super B factory uest for BSM

Super

KEKB

An example of upgrade issues: aerogel RICH as a PID device

 Proximity focusing RICH with aerogel radiator, with multiple layers with different indices → 'focusing' radiator

The studies associated with missing energies are potentially hot physics topics in the super *B*-factory era:

■ *B* decays with neutrinos (e.g. $B \rightarrow K(^*)_{\nu\nu}$, $B \rightarrow \tau_{\nu}$, $B \rightarrow D(^*)_{\nu}$, etc.)

■ Dark matter related searches (e.g. $Y(1S) \rightarrow$ nothing.)

Requirements for the analyses:

- Large data set & a high luminosity machine.
 - Since the reconstruction efficiencies are very small (<<0.1%).
- A clean environment.
 - \rightarrow In order to keep background level low.

Detector design target:

Large acceptance and high detection efficiencies

Benchmark mode: $B \rightarrow K(*)_{\nu\nu}$

$B \rightarrow K^{(*)} \nu \nu$: Introduction

- Proceed through electroweak penguin + box diagram.
- Sensitive to New Physics in the loop diagram.
- Theoretically clean: no long distance contributions.
- May be sensitive to light dark matter (C. Bird, PRL 93, 201803 (2004))

 $B \rightarrow K^{(*)} vv$: prospects for 10/ab

$B \rightarrow K^{(*)}vv$ with a Super Forward Detector

Minimum hypothesis:

 A super forward detector without precise tracking or energy resolution. (No direct contribution to the full-reconstruction part)

 Treat as a <u>veto detector</u> covering small and large angles.

Zero order study

MC simulation + reconstruction with current Belle detector.
 Guesstimate the extra background suppression power by applying veto to the generator particles in the uncovered region.

Configurations & assumptions

EFC = Extreme Forward Calorimeter in present Belle

Zero order study: results

Extra background suppression power:

	Muons only	Charged tracks	tracks + photons
EFC Coverage	6%	21%	29%
Up to inner EFC angle	18%	51%	64%
100% Coverage	19%	55%	69%

If we can reject all the charged tracks up to the coverage of inner EFC, we should be able to reject another **20-50%** of the background.

We should do a real simulation instead of such counting studies, and take the new design of IR/KEKB into account.

Extreme Forward Calorimeter -> Super Forward Detector

First order study: Geant4 simulations

Minimum hypothesis & target: A forward <u>TRACKER</u> for improving detector acceptance. (No direct contribution to the main analysis, but as a veto detector)

Reject the prompt tracks from IP for the full-reconstruction analyses.

No space so far, so we first have to show the capabilities of such a counter

Preliminary geometry

Build into Geant4 within the framework of Super Belle MC.
 Assuming a <u>silicon pixel detector</u> with large cells: 2mm x 2mm.

Sensor:

Coverage: FW (5.3°–11.1°), BW(165.1°–172.7°)

Track finding: straight lines

 Input: single forward muon with p = 0.25, 0.5, 1.0, 2.0 GeV/c.
 Output: efficiency >95% (cut |dr|<12 cm)

check the performance on background suppression.

Veto events with one or more reconstructed tracks: No tracks reconstructed

→Looks very promissing!

→More studies are required to arrive at a conclusive result, e.g. realistic material in front of the detector, supporting structure, shielding, etc. →Exposure to radiation: under study

- Official 20 page report released on January 4, 2008 by director A. Suzuki and KEK management
- KEKB's upgrade to 2x10³⁵ /cm²/sec in 3+x years is <u>the central element in particle physics</u>. (Funding limited: Final goal is 8 x 10³⁵ and an integrated luminosity of 50 ab⁻¹)
 - \rightarrow Recommended by the Roadmap Review Committee
 - Membership: Young Kee Kim, John Ellis, Rolf Heuer, Andrew Hutton, Jon Rosner, H. Takeda and reviewers from other fields

Super-Belle (and Super KEKB) is an open

<u>international project</u> that covers the next two orders of magnitudes at the luminosity frontier. <u>A special opportunity</u> for high impact international collaboration

** Possible 6-month shift to the right

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance.
- Major upgrade in 2009-12 \rightarrow Super B factory, L x10 \rightarrow x40
- Essentially a new project, all components have to be replaced, plans exist (LoI and baseline design), nothing is frozen...
- Missing energy studies have a high potential at the Super B factory (e.g. B → K(*) vv, B → τv, B → D(*)τv, Y(1S) → nothing etc.)
- A preliminary configuration of the Super Forward Detector has been investigated: removed ~30% of the backgrounds from B decays. More detailed and careful studies should be carried out.
- Expect a new, exciting era of discoveries, complementary to LHC
- Do not miss the chance to be a part of it...