

Univerza v Ljubljani

RICH counters for HERA-B and Belle PID upgrade

Peter Križan University of Ljubljana and J. Stefan Institute

CBM RICH Workshop, GSI, March 6-7, 2006

March 6, 2006

CBM RICH Workshop

HERA-B RICH RICH for the Belle PID upgrade Summary

The HERA-B Experiment

March 6, 2006

CBM RICH Workshop

HERA-B RICH

NIM A516 (2004) 445

Requirements:

- •High QE over ~3m²
- •Rates ~1MHz per channel
- Long term stability

HERA-B RICH: rates on the photon detector

Cadidates – original:

- •CsI based wire chamber with pads
- •TMAE based wire chamber with 'egg-crate' structure

Backup solution:

•Multianode PMTs Hamamatsu R5900 series

CsI chamber

A lot of very good results → NIM A300 (1991) 213; NIM A307 (1991) 145; NIM A364 (1995) 243

Beam test, accumulated rings → NIM A371 (1996) 151

CBM RICH Workshop

Show-stoppers for the use in HERA-B:

•High rate instabilities

•Ageing

→ NIM A387 (1997) 146

→ NIM A371 (1996) 151

TMAE chamber

Excellent performance:

•No feed-back photons

•Stable at high rates

NIM A371 (1996) 289

Show-stopper for HERA-B: ageing

NIM A414 (1998) 170

Possible remedy: heating in situ

NIM A515 (2003) 302

Status in 1996:

•TMAE and CsI have serious problems in long term operation at very high rates

•Hamamatsu just came out with the metail foil multianode PMTs of the R5900 series: first multianode PMTs with very little cross-talk

•Tested on the bench and in the beam: excellent performance \rightarrow easy decision

→ NIM A394 (1997) 27

Multianode PMTs

Hamamatsu

R5900-M16 (4x4 channels) R5900-M4 (2x2 channels)

Key features:

 Single photon pulse height spectrum

Low noise

Low cross-talk

CDM KICH WURSHUP

Multianode PMTs

Uniformity:

- •Large variation (3-4x) in amplification – no problem in photon counting (in case of low noise)
- •Good uniformity in QE x photo-electron collection efficiency

HERA-B RICH tiling scheme

Match the occupancy and resolution needs:

Finer granularity in the central part

Upper detector half:M16 PMTsM4 PMTs

Multianode PMTs

Large statistics (2300 pcs) QA tests → NIM A442 (2000) 316

March 6, 2006

CBM RICH Workshop

Multianode PMT read-out

CBM RICH Workshop

Front-end readout electronics:

Based on ASD8 read-out chips

ASD8 = 8 channel amplifier, shaper and discriminator: .ENC ~ 900 + 70/pF .shaping time ~ 10ns .sensitivity ~ 2.5mV/fC

ASD8 board: 16 channels (2 x ASD8 chips) →NIM A541 (2005) 610 Voltage divider: integrated in the PMT base board

March 6, 2006

- Light collection system features:
- -Only slightly aspheric
- -Easy to fabricate plastic lenses
- -Mold production, cheap
- -Integrated into the support structure

 $\mathsf{T}(\lambda)$ of the lens system, QE (λ) of PMT

0.8 transmission, quantum efficiency b) lens system 0.6 0.4 0.2 250

March 6, 2006

CBM RICH W

HERA

Mechanics

Photon detector: Upper half

Minimize the error due to spherical aberration.

Specific: Mirror tilted by 9⁰.

The optimal surface could be approximated by a deformed cyllinder, by about 20cm from the naive focal surface at R/2, and slightly tilted.

→NIM A433 (1996) 124

Mirrors

•Spherical mirrors: R=11.5m, hexagons of 7mm Pyrex glass, coated with 200nm Al and 30 nm of MgF_2

•Planar mirrors: rectangles of float glass

CBM RICH Workshop

Each segment: computer controlled motors for alignment

CBM RICH Workshop

Initial alignment: with teodolite inside the vessel

Final alignment: using data

Use rings with photons from different mirror segments for relative alignment

March 6, 2006

→NIM A433 (1999) 408

HERA-B RICH performace

Little noise, very clear rings

with ~30k readout channels

Performance

Typical event...

Background mainly from other tracks → adapt the extented maximum likelihood analysis with expectation-maximisation algorithm

→NIM A433 (1999) 279

March 6, 2006

Performance

Figure of merit: $N_0 = 42/cm$ (=expected)

Number of photons for =1 particles: 33

Single photon resolution:

- $\sigma_0 = 0.8$ mrad for finer granularity region (R5900-M16 tubes)
- $\sigma_0 = 1.0$ mrad for coarser granularity region (R5900-M4 tubes)

Performace

Idenfication of pions: pion efficiency, p, K fake probability

Idenfication of kaons: K efficiency, pion fake probability

Idenfication of protons: p efficiency, K fake probability

It actually works very well! \rightarrow NIM A516 (2004) 445

March 6, 2006

HERA-B RICH photon detector: how could we do it today?

We employed R5900 PMTs with a rather low active area fraction of 25% (36% for dense packing) + optical system.

Today: could go for a better active a. ratio \rightarrow

•In the meantime the same package comes without the nose at the sides - R7600

•and recently with an even better active area ratio (83%): R8900-03

•or use the H8500 ('flat pannel') PMT →

CBM RICH Workshop

Belle Upgrade for Super-B

Belle upgrade – side view

Two new particle ID devices, both RICHes:

Barrel: TOP or focusing DIRC

Endcap: proximity focusing RICH

K/π separation at 4 GeV/c $\theta_c(\pi) \sim 308 \text{ mrad} (n = 1.05)$ $\theta_c(\pi) - \theta_c(K) \sim 23 \text{ mrad}$

 $d\theta_c$ (meas.) = $\sigma_0 \sim 13$ mrad With 20mm thick aerogel and 6mm PMT pad size

 \rightarrow 6 σ separation with N_{pe}~10

Beam test: Cherenkov angle resolution and number of photons

NIM A521 (2004)367; NIM A553 (2005) 58

Beam test results with 2cm thick aerogel tiles: >4 σ K/ π separation

CBM RICH Workshop

-> Number of photons has to be increased.

What is the optimal radiator thickness?

March 6, 2006

CBM RICH Work

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

→ stack two tiles with different refractive indices: "focusing" configuration

Photon detector: array of 16 H8500 PMTs

March 6, 2006

CBM RICH Workshop

Peter Križan, Ljubljana

Beam tests: events

Photon detector: 4x4 H8500 PMTs

Clear rings, little background

March 6, 2006

x (mm)

x (mm)

Needs:

- Operation in high magnetic field (1.5T)
- High efficiency at λ >350nm
- Pad size ~5-6mm

Candidates:

- large area HPD of the proximity focusing type
- MCP PMT (Burle 85011)

N.B. H8500 PMT unfortunately does not work in high B field

Development and testing of photon detectors for 1.5 T

Candidate: large area HPD of the proximity focusing type

HPD development

59mm x 59mm active area (65%), 12x12 channels

Ceramic HPD box

Several tests carried out. Problems with sealing the tube at the window-ceramic box interface.

Photon detector R&D: Burle MCP-PMT

BURLE 85011 MCP-PMT:

.multi-anode PMT with 2 MCPs
.25 μm pores
.bialkali photocathode
.gain ~ 0.6 x 10⁶
.collection efficiency ~ 60%
.box dimensions ~ 71mm square
.64(8x8) anode pads
.pitch ~ 6.45mm, gap ~ 0.5mm
.active area fraction ~ 52%
.fast: ~55ps time resolution

Proc. IEEE NSS 2004

Study uniformity of the sensitivity over the surface

count rates - all channels: charge sharing at pad boundaries

2300 V x10³ $(mm) X_{50}^{0}$ single channel response: uniform over pad area extends beyond pad area (charge sharing) ICH Wo March 6 X (mm)

charge sharing at pad boundaries

 slice of the counting rate distribution including the central areas of 8 pads (single channels - colored, all channels - black)

Proc. IEEE NSS 2004

March 6, 2006

• BURLE MCP-PMT mounted together with an array of 12(6x2) Hamamatsu R5900-M16 PMTs at 30mm pitch (reference counter)

CBM RICH Workshop

Resolution and number of photons (clusters)

- $\sigma_9 \sim 13 \text{ mrad}$ (single cluster)
- number of clusters per track N ~ 4.5
- $\sigma_9 \sim 6 \text{ mrad (per track)}$
- -> ~ 4 $\sigma \pi/K$ separation at 4 GeV/c

Open questions

Operation in high magnetic field:

the present tube with 25μm pores only works up to 0.8T, for 1.5T need ~10μm 10μm version with 4 channels available since June, some tests done (Va'vra) **Number of photons per ring:** too small. Possible improvements: .bare tubes (52%->63%) .increase active area fraction (bare tube 63%->85%) .increase the photo-electron collection efficiency (from 60% at present up to 70%) -> Extrapolation from the present data 4.5 ->8.5 hits per ring σ_9 : 6 mrad -> 4.5 mrad (per track) -> >5 $\sigma \pi/K$ separation at 4 GeV/c

Aging of MCP-PMTs ?

Belle barrel upgrade: TOP counter

Tests on the bench: amplification and time resolution in high magnetic field.

3 MCP-PMTs studied

- Burle (25µm pores)
- Novosibirsk (6µm pores)
- Hamamatsu (6 and $10\mu m$ pores)

All: good time resolution at B=0

 $25 \mu m$ pore tube does not work at $\ 1.5 T$

Hamamatsu SL10

CBM RICH Workshop

Peter Križan, Ljubljana

NIM A528 (2004) 763

TOP: Beam tests

2100 V

Aun

Quartz bar spec.

Quartz : sprasil P20 (Synthetic fuzed silica, made by shin-etsu co.)

1000mm

size : $1000mm \times 200mm \times 20mm$ surface : 0.5nm(rms), figure $< 2\mu m$ squrness : < 0.3mrad, edge radius $< 5\mu m$ polished by Okamoto optics work,inc

What are the messages from our experience for the CBM RICH designers?

- HERA-B RICH: R5900 MA PMTs have proven to be an extremly reliable and easy to use detector for Cherenkov photons. Excellent performance in very adverse conditions.
- Belle forward region PID upgrade: excellent performance of the flat pannel PMT (R8500) in beam tests; for operation in 1.5T field, Burle MCP PMT seems to be a good candidate (with some changes).

- For many application in RICH imaging: Si based detectors would be great!
- →Single channel devices typically have a lot of dead area.

But:

Single channel: much easier to compensate for the dead areas than in multi-channel devices

Peter Križan, Ljubljana

Light collection: single vs multi channel

Multichannel device+imaging light collection system: Has a very limited angular acceptance

Single channel: combine a lens and mirror walls

Peter Križan, Ljubljana

Focusing DIRC photon detectors: time resolution

J. Va'vra et al, NIM A553 (2005) 96

CBM RICH Workshop