

Tests of a proximity focusing RICH WITH AEROGEL AS RADIATOR

Peter Križan University of Ljubljana and J. Stefan Institute

Nov. 12, 2002 N5, Joint NSS/MIC I, IEEE/NSS 2002, Norfolk

- Introduction, motivation
- Beam test results
- Summary, plans

Belle present: aerogel threshold Čerenkov

expected average yield vs

separation of K (below) vs. properly choosing n for a given kinematic region π (above thr.):

measured for 2 GeV/c< p < 3.5 GeV/c

Barrel: covers both tagging and $B \to \pi\pi, K\pi$ Forward: tagging only

Upgrade motivation

Physics motivation for the PID upgrade of the Belle spectrometer

- lacktriangle improve π/K separation in the forward (high momentum) region for few-body decays of B's
- lacktriangle good π/K separation for $b
 ightarrow d\gamma \ / \ b
 ightarrow s\gamma$
- improve purity in fully reconstructed B decays ('full reconstruction tag')
- lacktriangle low momentum (< 1 GeV/c) $e/\mu/\pi$ separation (e.g. in B o K l l)

Forward direction: a proximity focusing RICH with aerogel as radiator is being studied

Belle Aerogel-RICH R+D group: Chiba-KEK-Nagoya-TMU-Ljubljana

Proximity focusing RICH in the forward region

Forward region: two-body decay products have momenta of up to 4 GeV/c

Proximity focusing RICH in the end-cap region

Aerogel as radiator:

n=1.03:
$$\theta_c(\pi)=240$$
 mrad, $\theta_c(\pi)-\theta_c(K)=31$ mrad at 4 GeV/c number of photons in 2 cm of aerogel: 10 $(N_0=90/{\rm cm},\ {\rm no\ absorption})$

n=1.05:
$$\theta_c(\pi)=310$$
 mrad, $\theta_c(\pi)-\theta_c(K)=23$ mrad at 4 GeV/c number of photons in 2 cm of aerogel: 17 $(N_0=90/{\rm cm},\ {\rm no\ absorption})$

Beam test - set up

line at KEK Beam test of a prototype was carried out in November/December 2001 at a pion beam

Photon detector: Hamamatsu R5900-00-M16 16 channel multianode PMTs

A wide variety of parameters was investigated

- refractive index, thickness and type of aerogel
- beam momentum and angle of incidence
- behavior at the boundary of the aerogel tiles

Beam test results - number of photons

number of hits per ring for different aerogels (refractive index, production method)

 \downarrow

- higher ref. index does not produce more photons because of absorption
- doubling the thickness does not double the photons
- Novosibirsk aerogel has a considerably higher yield

Beam test results - resolution

tant multiple scattering starts to become imporresolution vs momentum: at lower momenta,

ups (distance was varied to accommodate to compare the resolutions with various settween the radiator and the photon detector normalize to a given distance (200nm) bethe full ring on the photon detector) we

Beam test results - $e/\mu/\pi$ separation

for the $B \to Kll$ decays Another benefit from such a counter: $e/\mu/\pi$ separation at low momenta, of importance

Čerenkov angle distribution for single photons, at $p=0.8~{\rm GeV/c}$

same, but with electrons vetoed with a CO₂ threshold Čerenkov counter

Beam test results - effects of the tile boundary

Scan with the beam over the vicinity of the boundary between two tiles, determine yield as a function of the impact point position (>-0 on the boundary)

As expected, the yield is affected over a few mm in the vicinity of the boundary.

A simple model (all photons hitting the boundary get lost) accounts for most of the dependence.

Beam test results - summary

- the first beam test of a proximity focusing RICH with aerogel as radiator showed that the method is feasible
- the counter performed according to expectations
- the contributions to the resolution are well understood (no contribution from aerogel material)
- the number of photons has to be increased for the detector to become a reliable PID tool
- the test was performed with Hamamatsu R5900-M16 PMTs, a well understood single photon detector (HERA-B RICH) which will not work in a high magnetic field environment

9.7	9.8	2.9	2.7	1.050
6.7	7.0	2.7	2.6	1.029
$\sigma_{ heta}$ expected	$\sigma_{ heta}$ measured	Ndet expected	Ndet measured	ref. index

Photon detector R+D

- Develop detector of single photons which works efficiently in a high magnetic field (1.5 T)
- Increase the number of photons by developing photon detectors with a higher active area fraction (multianode PMTs: 36%) or by using light collection systems

Radiator R+D

find a method to produce hydrophobic aerogel with low absorption and large tile

Next beam test

An itermediate step:

- use an array of 16 flat pannel PMTs
- use recently produced aerogels from University of Chiba, Matsushita and Novosibirsk
- test a new read-out scheme

Starts this Saturday at KEK.

Summary

- Beam test was a successful proof of principle
- Beam test confirmed the results of our simulation tools, and showed where further R+D has to go
- A wide range of R+D activities was started (together with the industry) with the aim to develop an efficient photon detector with a high active area to work in high magnetic fields
- Radiator R+D has already given some encouraging results
- We are looking forward to the next beam test next week

Light collection system

Increase the number of photons by using a light collection systems

- single lens system
- two lens device
- light guides

Two lenses as light collection system

