

Nobel Symposium on LHC results, Krusenberg, May 13-17, 2013

NOBEL SYMPOSIA

Flavour physics at B factories: status and outlook

Peter Križan

University of Ljubljana and J. Stefan Institute

University of Ljubljana "Jožef Stefan" Institute

Contents

•Introduction with a little bit of history

- •B factories: recent results
- •Super B factory: status and outlook
- •Summary and the three questions

Flavour physics at the luminosity frontier with asymmetric B factories

Advantages of B factories in the LHC era

$$egin{array}{lll} B^+ &
ightarrow D^0 \pi^+ \ &(
ightarrow K \pi^- \pi^+ \pi^-) \ B^- &
ightarrow au(
ightarrow e
u ar{
u})
u \end{array}$$

Unique capabilities of B factories:

- \rightarrow Exactly two B mesons produced (at Y(4S))
- \rightarrow High flavour tagging efficiency
- → Detection of gammas, π^0 s, K_Ls
- → Very clean detector environment (can observe decays with several neutrinos in the final state!)
- → Well understood apparatus, with known systematics, checked on control channels

Integrated luminosity at B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

CP violation in the B system and unitarity triangle

B factories: CP violation in the B system

CP violation in the B system: from the discovery (2001) to a precision measurement (2011).

Comparison of energy /intensity frontiers To observe a large ship far away one can either use strong binoculars or observe carefully the direction and the speed of waves produced by the vessel.

The unitarity triangle – new/final measurements

Constraints from measurements of angles and sides of the unitarity triangle \rightarrow Remarkable agreement, but still 10-20% NP allowed

Recent results:

→ $sin2\phi_1(=sin2\beta)$: final measurements → $\phi_2(=\alpha)$: final measurements → $\phi_3(=\gamma)$: new model-independ. method → $|V_{ub}|$ from exclusive and inclusive semileptonic decays

Final measurement of $sin2\phi_1$ (= $sin2\beta$)

 ϕ_1 from CP violation measurements in $B^0 \rightarrow c\overline{c} K^0$

Final measurement: with improved tracking, more data, improved systematics (50% more statistics than last result with 492 fb⁻¹); $cc = J/\psi, \ \psi(2S), \ \chi_{c1} \rightarrow 25k \text{ events}$

Detector effects: wrong tagging, finite Δt resolution \rightarrow determined using control data samples

Events / 0.5

Asymmetry

350

300

250 200

150

100

0.6

0. 0.2

-0.2

-0.4

-0.6

-6 -4 -2

0

∆t (ps)

2

4

Belle, final, 710 fb⁻¹, PRL 108, 171802 (2012)

0.2

-0.2 -0.4

-0.6

Peter Križan, Ljubljana

-2

0

∆t (ps)

6

-6 -4

Final measurements of $sin2\phi_1$ (= $sin2\beta$)

 ϕ_1 from $B^0 \to c \overline{c} K^0$

Final results for $sin2\phi_1$

Belle:	0.668 ± 0.023 ± 0.012
BaBar:	0.687 ± 0.028 ± 0.012

BaBar, PRD 79, 072009 (2009)

with a single experiment precision of $\sim 4\%$!

Comparison with LHCb:

•The power of tagging at B factories: 33% vs ~2-3% at LHCb

•LHCb: with 8k tagged $B_d \rightarrow J/\psi K_S$ events from 1/fb measured sin2 β = 0.73 ± 0.07(stat.) ± 0.04(syst.)

 Uncertainties at B factories - e.g., Belle final result sin2β = 0.668 ± 0.023(stat.) ± 0.012(syst.) - are 3x smaller than at LHCb

Final measurement of $\phi_2(\alpha)$ in $B \rightarrow \pi^+\pi^-$ decays

ϕ_2 from CP violation measurements in B⁰ $\rightarrow \pi^+\pi^-$

Improved measurement of $\phi_2(\alpha)$ in $B \rightarrow \pi\pi$, $\rho\rho$, $\rho\pi$ decays

 ϕ_2 (α) from CP violation and branching fraction measurements in B $\rightarrow \pi\pi$, ρρ, ρπ

$\phi_3(=\gamma)$ with Dalitz analysis

$\phi_3(=\gamma)$ from model-independent/binned Dalitz method

GGSZ method: How to avoid the model dependence?

→ Suitably subdivide the Dalitz space into bins

$$M_{i}^{\pm} = h\{K_{i} + r_{B}^{2}K_{-i} + 2\sqrt{K_{i}K_{-i}}(x_{\pm}c_{i} + y_{\pm}s_{i})\}$$

 $x_{\pm} = r_B \cos(\delta_B \pm \phi_3)$ $y_{\pm} = r_B \sin(\delta_B \pm \phi_3)$

 M_i : # *B* decays in bins of *D* Dalitz plane, K_i : # D^0 ($\overline{D^0}$) decays in bins of *D* Dalitz plane ($D^* \rightarrow D\pi$), c_i , s_i : strong ph. difference between symm. Dalitz points \leftarrow Cleo, PRD82, 112006 (2010)

ϕ_3 measurement

Combined ϕ_3 value:

 $\phi_3 = (67 \pm 11)$ degrees

Note that at B factories the measurement of ϕ_3 finally turned out to be much better than expected!

This is not the last word from B factories, analyses still to be finalized...

$|V_{ub}|$ from inclusive decays $B \rightarrow X_u \ell^+ \nu$

The other possibility: inclusive $b \rightarrow u$ measurement by measuring

- lepton spectrum in semileptonic $b \rightarrow u \ell^+ v$ decays, or by using
- tagged events (e.g. fully reconstruct one of the B's, and then measure the rate vs mass of the hadronic system X_u)

Inclusive decays

 $|V_{ub}| = (4.42 \pm 0.20 \text{ (exp)} \pm 0.15(\text{th})) \cdot 10^{-3}$

vs exclusive decays

 $|V_{ub}| = (3.23 \pm 0.30) \cdot 10^{-3}$

 \rightarrow Tension between inclusive and exclusive decays is still there - and not understood

Rare B decays

 $\mathcal{B}(B \to X_s \gamma; 1.7 \, GeV < E_{\gamma} < 2.8 \, GeV) = (3.47 \pm 0.15 \pm 0.40) \cdot 10^{-4}$

$B \to X_s \gamma \text{ inclusive}$

Branching fraction, world average $\mathcal{B}(B \to X_{s}\gamma; E_{\gamma} > 1.6 \, GeV) = \text{HFAG, ICHEP'10}$ = (3.55 ± 0.24(*stat.* + *syst.*) ± 0.09(*shape f.*)·10⁻⁴

Decay rate sensitive to charged Higgs

→ tight constraints on models of new physics, two-Higgs-doublet model II mass limit at ~300 GeV/c²

Measurements systematics dominated

Systematics can be reduced by stronger tagging (e.g. full reconstruction of the other B) on the account of stat. uncertainty \Rightarrow need a larger sample \rightarrow Super B factory

Search for direct CP violation in $B \to X_{s+d} \gamma$ decays

Benzke, Lee, Neubert, Paz, PRL 106, 141801 (2011)

• Inclusive analysis with lepton tag (tags B flavour and reduces background)

• Energy range (2.1<E<2.8 GeV) chosen to minimize total error (stat+syst).

BaBar, Phys. Rev. Lett. 109, 191801 (2012)

$$B^{\scriptscriptstyle -} \not \to \tau^{\scriptscriptstyle -} \, \nu_\tau$$

Example of a missing energy decay

Full reconstruction tagging

Idea: fully reconstruct one of the B's to tag B flavor/charge, determine its momentum, and exclude decay products of this B from further analysis (exactly two B's produced in Y(4S) decays)

Powerful tool for B decays with neutrinos, used in several analyses in this talk

 \rightarrow unique feature at B factories

 $B^{-} \rightarrow \tau^{-} \nu_{\tau}$ Method: tag one B with full reconstruction, look for the B⁻ $\rightarrow \tau^- \nu_{\tau}$ in the rest of the event. 120 (Projected in all M_{miss}² regior Events / 0.05 GeV 0 8 09 00 0 8 00 Main discriminating variable on the signal side: remaining energy in the calorimeter, not associated with any charged track or photon \rightarrow Signal at E_{FCI} = 0 signal (3.0σ) 20 $Br(B \rightarrow \tau \nu) = [0.72^{+0.27}_{-0.25} \pm 0.11] \times 10^{-4}$ 0.8 1.2 0.6 Belle E_{ECL} (GeV) PRL 110, 131801 (2013) ≥ 300 (a) $Br(B \rightarrow \tau v) = [1.83^{+0.53}_{-0.49} \pm 0.24] \times 10^{-4}$ BaBar e 250 200 Z Phys. Rev. D 88, 031102(R) (2013) Signal (3.8σ 150 All measurements combined 100 $BF(B \to \tau \nu) = (1.15 \pm 0.23) \cdot 10^{-1}$ 0.2 0.4 0.6 0.8 E_{extra} [GeV] $r_{H} = \frac{BF(B \to \tau \nu)_{meas}}{BF(B \to \tau \nu)_{SM}} = 1.14 \pm 0.40$ Peter Križan, Ljubljana

Charged Higgs limits from $B\to \tau^-\,\nu_\tau$

Measured value

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

 \rightarrow limit on charged Higgs mass vs. tanβ (for type II 2HDM)

$B \rightarrow D^{(*)}\tau\nu$ decays

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ , e could be reduced/enhanced significantly Kamenik, Mescia arXiv:0802.3790

$$R(D)\equiv rac{\mathcal{B}(B o D au
u)}{\mathcal{B}(B o D\ell
u)}$$

Complementary and competitive with $B{\rightarrow}\tau\nu$ R(D)1.Smaller theoretical uncertainty of R(D)

For $B \rightarrow \tau v$, There is O(10%) f_B uncertainty from lattice QCD

2.Large Brs ($\sim 1\%$) in SM (Ulrich Nierste arXiv:0801.4938.)

3. Differential distributions can be used to discriminate W⁺ and H⁺ 4. Sensitive to different vertex $B \rightarrow \tau v$: H-b-u, $B \rightarrow D\tau v$: H-b-c

(LHC experiments sensitive to H-b-t)

First observation of $B \rightarrow D^{*-}\tau v$ by Belle (2007)

→ PRL 99, 191807 (2007)

$B \to D^{\,(*)} \, \tau \nu \,$ decays

Exclusive hadron tag data

\rightarrow Combined result: 3σ away from SM.

Blue: this result, red: Type-II 2HDM.

→ Combined result: Type II 2HDM excluded at 99.8% C.L. for any values of tan β and charged Higgs mass

More discussion of the implications: BaBar, Phys. Rev. Lett. 109, 101802 (2012) Peter Križan, Ljubljana

$B \to h \nu \overline{\nu} \ decays$

Events/0.1 GeV

14

 $B^+ \rightarrow K^+ \nu \overline{\nu}$

Method: again tag one B with full reconstruction, search for signal in the remaining energy in the calorimeter, at $E_{ECL} = 0$

Present status: recent update from Belle

$B \longrightarrow K^{(*)} \nu \bar{\nu}$

arXiv:1002.5012

Charm and τ physics

B factories = charm and τ factories

Charm and τ can be found in any "Y(nS) samples"

- → the integrated luminosity of the samples used for charm and τ studies is larger than for the B physics studies (Belle ~ 1 ab⁻¹, BaBar ~0.550 ab⁻¹)
- \rightarrow This will of course remain true for the super B factory

A few examples of the strengths of B factories:

- CP violation in charm at B factories (and super B factories) \rightarrow can measure CPV separately in individual decay channels, $\pi^+\pi^-$, K^+K^- , $K_S\pi$,...
- DD pairs produced with very few light hadrons
- Full reconstruction of events

Rare charm decays: tag with the other D

Again make use of the hermeticity of the apparatus! Example: leptonic decays of D_s

$$e^+e^- \to c\overline{c} \to \overline{D}_{tag}KX_{frag}D_s^{*+}$$

Recoil method in charm events:

- Reconstruct D_{tag} to tag charm, kaon to tag strangeness
- Additional light mesons (X_{frag}) can be produced in the fragmentation process (π , $\pi\pi$, ...)
- 2 step reconstruction:
- Inclusive reconstruction of D_s mesons for normalization (without any requirements upon D_s decay products)
- Within the inclusive D_s sample search for D_s decays

• $D_s \rightarrow \mu \nu$: peak at $m_{\nu}^2 = 0$ in $M_{\rm miss}^2(D_{\rm tag}KX_{\rm frag}\gamma\mu)$

• $D_s \rightarrow \tau \nu$: peak towards 0 in extra energy in calorimeter

$D_s^+ \to \mu^+ \nu_\mu$

Charm: last but not least...

Rare τ decays

Example: lepton flavour violating decay $\tau \to \mu \, \gamma$

LFV in tau decays: present status

Lepton flavour violation (LFV) in tau decays: would be a clear sign of new physics

LFV and New Physics

- $\tau \rightarrow 3I, I\eta$
 - Neutral Higgs mediated decay.
 - Important when Msusy >> EW scale. $Br(\tau \rightarrow 3\mu) =$

$$4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^2\right)_{32}}{\overline{m}_{\tilde{L}}^2}\right) \left(\frac{\tan\beta}{60}\right)^6 \left(\frac{100GeV}{m_A}\right)^4$$

model	Br(τ→μγ)	Br(τ→III)
mSUGRA+seesaw	10 ⁻⁷	10 ⁻⁹
SUSY+SO(10)	10 ⁻⁸	10 ⁻¹⁰
SM+seesaw	10 ⁻⁹	10 ⁻¹⁰
Non-Universal Z'	10 ⁻⁹	10 ⁻⁸
SUSY+Higgs	10 ⁻¹⁰	10 ⁻⁷

Peter Križan, Ljubljana

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau \nu$, $D \tau \nu$)
- b→s transitions: probe for new sources of CPV and constraints from the b→sγ branching fraction
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$
- Observation of D mixing
- Searches for rare τ decays
- Discovery of exotic hadrons including charged charmonium- and bottomonium-like states

B factories remain competitive in many measurements because of their unique capabilities.

What next?

Next generation: Super B factories \rightarrow Looking for NP

 \rightarrow Need much more data (almost two orders!)

However: it will be a different world in four years, there will be serious competition from LHCb and BESIII

Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more

→ Physics at Super B Factory, arXiv:1002.5012 (Belle II)
→ SuperB Progress Reports: Physics, arXiv:1008.1541 (SuperB)

Need O(100x) more data →Next generation B-factories

How to increase the luminosity?

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

Installation of 100 new long LER bending magnets done Installation of HER wiggler chambers in Oho straight section is done.

Low emittance positrons to inject

Damping ring tunnel: built!

South a Alt

Low emittance gun

Low emittance electrons to inject Add / modify RF systems for higher beam current

Requirements for the Belle II detector

Critical issues at L= 8 x 10^{35} /cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Solutions:

- Replace inner layers of the vertex detector with a pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter crystals
- Faster readout electronics and computing system.

Belle II TDR, arxiv:1011.0352v1[physics.ins-det]

Belle II Detector

Belle II Detector (in comparison with Belle)

Belle II Detector – vertex region

Belle II CDC

Much bigger than in Belle!

Wire stringing in a clean room

- thousands of wires,
- 1 year of work...

Peter Križan, Ljubljana

Aerogel RICH (endcap PID)

Photons : 41339.7 +- 227.3

Photon/track: 15.31 +- 0.08 BG / track : 2.00 +- 0.03

run048

Peter Križan, Ljubljana

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

6.6 σ π/K at 4GeV/c !

RICH with a novel "focusing" radiator – a two layer radiator

Employ multiple layers with different refractive indices \rightarrow Cherenkov images from individual layers overlap on the photon detector.

2000

1000

°0

The Belle II Collaboration

A very strong group of ~480 highly motivated scientists!

SuperKEKB/Belle II Status

Funding

- ~100 MUS for machine approved in 2009 -- Very Advanced Research Support Program (FY2010-2012)
- Full approval by the Japanese government in December 2010; the project was finally in the JFY2011 budget as approved by the Japanese Diet end of March 2011
- Most of non-Japanese funding agencies have also already allocated sizable funds for the upgrade of the detector.

Fortunately little damage during the March 2011 earthquake \rightarrow no delay

3

Ground breaking ceremony in November 2011

SuperKEKB and Belle II construction proceeds according to the schedule.

The Italian super B factory project SuperB was unfortunately canceled, some of the former SuperB collaborators have joined/will join Belle II.

SuperKEKB luminosity projection

Peter Križan, Ljubljana

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpassing design perfomance
- Super B factory at KEK under construction 2010-15 → SuperKEKB+Belle II, L x40, construction at full speed – the biggest particle physics project under preparation
- Expect a new, exciting era of discoveries, complementary to the LHC

