

Belle-II and SuperKEKB

Peter Križan University of Ljubljana and J. Stefan Institute

Seminar, Queen Mary, University of London, January 14, 2011

University of Ljubljana

"Jožef Stefan" Institute

- •Physics case for a super B factory
- •Accellerator upgrade → SuperKEKB
- •Detector upgrade \rightarrow Belle-II
- •Summary

Asymmetric B factories

Main motivation for B factories: measure CP violation in the B system

CP violation in B system: from the discovery (2001) to a precision measurement (2006)

 $sin2\phi_1/sin2\beta$ from b \rightarrow ccs

535 M BB pairs

 $sin2\phi_1 = 0.642 \pm 0.031$ (stat) ± 0.017 (syst)

CP violation in the Standard model – related to the quark transition matrix

Cabbibo-Kobayashi-Maskawa matrix

deviations could signal processes not included in SM

CKM matrix is unitary in SM

 $-- \bigvee_{ij}^{W^{\pm}} \overline{q}_{i}$

Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb

Transitions between members of the same family more probable (=thicker lines) than others

CKM: almost a diagonal matrix, but not completely CKM: almost real, but not completely!

CKM matrix

Wolfenstein parametrisation: expand in the parameter λ (=sin θ_c =0.22) A, ρ and η : all of order one

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Unitarity condition:
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

ß

ρ

0

U

Three Angles: (ϕ_1, ϕ_2, ϕ_3) or (β, α, γ)

Big Questions: Are determinations of <u>angles</u> consistent with determinations of the <u>sides</u> of the triangle? Are angle determinations from loop and tree decays consistent?

B meson production at Y(4s)

Big advantage: low background

Belle spectrometer at KEK-B

All measurements combined...

Constraints from measurements of angles and sides of the unitarity triangle

 \rightarrow Remarkable agreement

Consistent picture

Relations between parameters as expected in the Standard model →

\rightarrow With essential confirmations BaBar and Belle!

B factories: a success story

- Measurements of CKM matrix elements and angles of the unitarity triangle
- Observation of direct CP violation in B decays
- Measurements of rare decay modes (e.g., $B \rightarrow \tau v$, $D \tau v$)
- b→s transitions: probe for new sources of CPV and constraints from the b→sγ branching fraction
- Forward-backward asymmetry (A_{FB}) in $b \rightarrow sl^+l^-$ has become a powerfull tool to search for physics beyond SM.
- Observation of D mixing
- Searches for rare τ decays
- Observation of new hadrons

New hadrons at B-factories

Discoveries of many new hadrons at B-factories have shed light on a new class of hadrons beyond the ordinary mesons.

Luminosity at B factories

Fantastic performance much beyond design values!

What next?

B factories \rightarrow is SM with CKM right?

Next generation: Super B factories \rightarrow in which way is the SM wrong?

→ Need much more data (two orders!) because the SM worked so well until now → Super B factory

However: it will be a different world in four years, there will be serious competition from LHCb and BESIII

Still, e⁺e⁻ machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more

Full Reconstruction Method

- Fully reconstruct one of the B's to
 - Tag B flavor/charge
 - Determine B momentum
 - Exclude decay products of one B from further analysis

 \rightarrow Offline B meson beam!

Powerful tool for B decays with neutrinos

Event candidate $B^- \rightarrow \tau^- \nu_{\tau}$

Charged Higgs limits from $B^- \rightarrow \tau^- \nu_{\tau}$

$$r_{H} = \frac{BF(B \to \tau \nu)}{BF(B \to \tau \nu)_{SM}} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2}$$

\rightarrow limit on charged Higgs mass vs. tan β

$B \rightarrow D^{(*)} \tau v$

Semileptonic decay sensitive to charged Higgs

Ratio of τ to μ,e could be reduced/enhanced significantly

$$R(D) \equiv \frac{\mathcal{B}(B \to D\tau\nu)}{\mathcal{B}(B \to D\ell\nu)}$$

3. Differential distributions can be used to discriminate W⁺ and H⁺ -4. Sensitive to different vertex $B \rightarrow \tau v$: H-b-u, $B \rightarrow D\tau v$: H-b-c (LHC experiments sensitive to H-b-t) $B \rightarrow D\tau v$

$B \rightarrow D^* \tau v - similar constraints on H^+$

[PRL 99, 191807 (2007)]

Recent update: CKM2010, A. Bozek

Why FCNC decays?

Flavour changing neutral current (FCNC) processes (like $b \rightarrow s, b \rightarrow d$) are fobidden at the tree level in the Standard Model. Proceed only at low rate via higher-order loop diagrams. Ideal place to search for new physics.

How can New Physics contribute to $b \rightarrow s$?

For example in the process:

 $B^0 \to \eta' K^0$

Ordinary penguin diagram with a t quark in the loop

Diagram with supersymmetric particles

 $B \rightarrow K^{(*)}vv$

 $\begin{array}{l} B \to K_{VV}, \ \mathcal{B} \sim 4.10^{-6} \\ B \to K^* vv, \ \mathcal{B} \sim 6.8.10^{-6} \end{array}$

SM: penguin+box

Look for departure from the expected value \rightarrow information on couplings C_R^v and C_L^v compared to $(C_L^v)^{SM}$

Again: fully reconstruct one of the B mesons, look for signal (+nothing else) in the rest of the event.

arXiv:1002.5012

not possible @ LHCb

CP violation in $B \rightarrow K_S \pi^0 \gamma$

CP violation in $B \rightarrow K_S \pi^0 \gamma$ decays: Search for right-handed currents

 $B \rightarrow K^* \gamma, \mathcal{B} \sim 4.0 \cdot 10^{-5}$

 $\delta S \sim 0.2$ (present) $\rightarrow \sim a$ few % at 50 ab^{-1}

not possible @ LHCb

Another FCNC decay: $B \rightarrow K^* I^+ I^-$

 $b \rightarrow s ||^{-1}$ was first measured in $B \rightarrow K ||^{-1}$ by Belle (2001).

Important for further searches for the physics beyond SM

Particularly sensitive: backward-forward asymmetry in K^{*} I⁺I

$$A_{FB} \propto \Re \left[C_{10}^* (sC_9^{eff}(s) + r(s)C_7) \right]$$

C_i : Wilson coefficients, abs. value of C₇ from b→s γ s=lepton pair mass squared

 $A_{FB}(B \rightarrow K^* I^+ I^-)[q^2]$

Zero-crossing q^2 for A_{FB} will be determined with a 5% error with 50ab⁻¹.

Strong competition from LHCb and ATLAS/CMS

A difference in the direct violation of CP symmetry in B⁺ and B⁰ decays

CP asymmetry

$$\mathcal{A}_{f} = \frac{N(\overline{B} \to \overline{f}) - N(B \to f)}{N(\overline{B} \to \overline{f}) + N(B \to f)}$$

Difference between B⁺ and B⁰ decays In SM expect $\mathcal{A}_{K^{\pm}\pi^{\mp}} \approx \mathcal{A}_{K^{\pm}\pi^{0}}$

Measure:

 $\begin{aligned} \mathcal{A}_{K^{\pm}\pi^{\mp}} &= -0.094 \pm 0.018 \pm 0.008 \\ \mathcal{A}_{K^{\pm}\pi^{0}} &= +0.07 \pm 0.03 \pm 0.01 \end{aligned}$

 $\Delta \mathcal{A} = +0.164 \pm 0.037$

A problem for a SM explanation (in particular when combined with other measurements)

A hint for new sources of CP violation?

nature International weekly journal of science	
nature	Vol 452 20 March 2008 doi:10.1038/nature06827

LETTERS

Difference in direct charge-parity violation between charged and neutral *B* meson decays

The Belle Collaboration*

D⁰ mixing in K+K⁻, $\pi^+\pi^-$

CP violation in the D system would be a clear sign of new physics

LFV and New Physics

- $\tau \rightarrow 3I, I\eta$ $h \qquad \mu(s)$ $\overline{\mu(s)}$
 - Neutral Higgs mediated decay.
 - Important when Msusy >> EW scale. $Br(\tau \rightarrow 3\mu) =$

$$4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^2\right)_{32}}{\overline{m}_{\tilde{L}}^2}\right) \left(\frac{\tan\beta}{60}\right)^6 \left(\frac{100GeV}{m_A}\right)^4$$

model	Br(τ→μγ)	Br(τ→III)
mSUGRA+seesaw	10 ⁻⁷	10 ⁻⁹
SUSY+SO(10)	10 ⁻⁸ 10)-10
SM+seesaw	10 -9	10 ⁻¹⁰
Non-Universal Z'	10 -9	10 ⁻⁸
SUSY+Higgs	10 ⁻¹⁰	10 ⁻⁷

B Dhysics @	$V(\Lambda \mathbf{S})$				
D I Hysics @	1(43)		Observable	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})
Observable	B Factories (2 ab^{-1})	$SuperB$ (75 ab^{-1})	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$\sin(2eta) \; (J/\psi K^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)
$\cos(2eta) \; (J/\psi \; K^{*0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)
$\sin(2\beta) \ (Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$\cos(2eta)~(Dh^0)$	0.20	0.04			
$S(J/\psi \pi^0)$	0.10	0.02	$\mathcal{B}(B \to \tau \nu)$	20%	4% (†)
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \mu \nu)$	visible	5%
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B \to D\tau\nu)$	10%	2%
$S(\eta'K^0)$	0.05	0.01 (*)	2(2 277)	2070	270
$S(K^0_sK^0_sK^0_s)$	0.15	0.02(*)	$B(B \rightarrow cc)$	150%	2% (+)
$S(K^0_S\pi^0)$	0.15	0.02 (*)	$\mathcal{B}(B \to p_{f})$	200%	570 (T) E07
$S(\omega K_s^0)$	0.17	0.03 (*)	$B(B \rightarrow \omega \gamma)$	30%	3%
$S(f_0K_s^0)$	0.12	0.02 (*)	$A_{CP}(B \to K^*\gamma)$	0.007 (†)	0.004 († *)
			$A_{CP}(B ightarrow ho\gamma)$	~ 0.20	0.05
$\gamma \ (B \to DK, D \to CP \text{ eigenstates})$) $\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s \gamma)$	0.012(†)	$0.004(\dagger)$
$\gamma \ (B \to DK, D \to \text{suppressed stat})$	(es) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)
$\gamma \ (B \to DK, D \to { m multibody stat})$	es) $\sim 9^{\circ}$	1.5°	$S(K^0_s\pi^0\gamma)$	0.15	0.02 (*)
$\gamma \ (B \to DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$\alpha \ (B o \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^* \ell \ell)$	7%	1%
$lpha \; (B ightarrow ho ho)$	$\sim 7^{\circ}$	1-2° (*)	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$lpha \; (B ightarrow ho \pi)$	$\sim 12^{\circ}$	2°	$A^{FB}(B \to X_{\ell}\ell\ell)s_0$	35%	5%
$\alpha \ (\text{combined})$	$\sim 6^{\circ}$	1-2° (*)	$\mathcal{B}(B \to K \nu \overline{\nu})$	visible	20%
			$\mathcal{B}(B \to \pi \nu \bar{\nu})$	_	possible
$2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{s}\pi^{\mp})$	20°	5°	$\mathcal{L}(\mathcal{D} \rightarrow \mathcal{R}\mathcal{D}\mathcal{D})$		possible

τ Physics	Sensitivity
${\cal B}(au o \mu \gamma)$	$2 imes 10^{-9}$
${\cal B}(au o e \gamma)$	$2 imes 10^{-9}$
${\cal B}(au o \mu \mu \mu)$	$2 imes 10^{-10}$
$\mathcal{B}(au ightarrow eee)$	$2 imes 10^{-10}$
${\cal B}(au o \mu \eta)$	$4 imes 10^{-10}$
${\cal B}(au o e\eta)$	$6 imes 10^{-10}$
$\mathcal{B}(au o \ell K_s^0)$	$2 imes 10^{-10}$

B _s Physics @ Y	(5S)	
Observable	Error with 1 ab^{-1}	Error with 30 ab^{-1}
$\Delta\Gamma$	$0.16 \ \mathrm{ps^{-1}}$	$0.03 \ {\rm ps^{-1}}$
Γ	$0.07 \ \mathrm{ps^{-1}}$	$0.01 \ {\rm ps^{-1}}$
β_s from angular analysis	20°	8°
$A_{ m SL}^s$	0.006	0.004
$A_{\rm CH}$	0.004	0.004
${\cal B}(B_s o \mu^+ \mu^-)$	-	$< 8 imes 10^{-9}$
$\left V_{td}/V_{ts} ight $	0.08	0.017
${\cal B}(B_s o \gamma \gamma)$	38%	7%
β_s from $J/\psi\phi$	10°	3°
β_s from $B_s \to K^0 \bar{K}^0$	24°	11°

Charm mi	xing	and C	P
Mode O	bservable	$\Upsilon(4S)$	$\psi(3770)$
	-2	(75 ab^{-1})	(300 fb^{-1})
$D^0 \rightarrow K^+ \pi^-$	x'^{2}	3×10^{-5}	
$D^0 \rightarrow K^+ K^-$	y'	7×10^{-4} 5 $\times 10^{-4}$	
$D \rightarrow K^0 \pi^+ \pi^-$	y_{CP}	3×10^{-4}	
	$\frac{w}{y}$	3.5×10^{-4}	
	q/p	3×10^{-2}	
0	ϕ	2°	
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$
	y		$(1-2) \times 10^{-3}$
	cos∂		(0.01 - 0.02)
Charm FC	NC -		
			Sensitivity
$D^0 ightarrow e^+e^-, D^0$	$ ightarrow \mu^+ \mu^-$	_	$1 imes 10^{-8}$
$D^0 ightarrow \pi^0 e^+ e^-, I$	$D^0 \to \pi^0$	$\mu^+\mu^-$	$2 imes 10^{-8}$
$D^0 ightarrow \eta e^+ e^-, D$	$^{0} ightarrow\eta\mu^{+}$	$^{-}\mu^{-}$	$3 imes 10^{-8}$
$D^0 ightarrow K^0_s e^+ e^-,$	$D^0 \to K$	$C_s^0 \mu^+ \mu^-$	$3 imes 10^{-8}$
$D^+ \rightarrow \pi^+ e^+ e^-,$	$D^+ \to \pi$	$\pi^+\mu^+\mu^-$	$1 imes 10^{-8}$
$D^0 o e^\pm \mu^\mp$			$1 imes 10^{-8}$
$D^+ \to \pi^+ e^\pm \mu^\mp$			$1 imes 10^{-8}$
$D^0 o \pi^0 e^{\pm} \mu^{\mp}$			2×10^{-8}
$D^0 o \eta e^{\pm} \mu^{\mp}$			$3 imes 10^{-8}$
$D^0 ightarrow K^0_{ m e} e^{\pm} u^{\mp}$			$3 imes 10^{-8}$
<i>s</i> - <i>r</i> -			
$D^+ \rightarrow \pi^- e^+ e^+.$	$D^+ \rightarrow I$	$K^{-}e^{+}e^{+}$	1×10^{-8}
$D^+ \rightarrow \pi^- \mu^+ \mu^+$	$D^+ \rightarrow$	$K^{-}\mu^{+}\mu^{+}$	1×10^{-8}
$D^+ \rightarrow \pi^- e^\pm \mu^\mp$	$D^+ \rightarrow D^+$	$K^-e^{\pm}\mu^{\mp}$	1×10^{-8}
–			27.20

M. Giorgi, ICHEP2010

Physics at a Super B Factory

- There is a good chance to see new phenomena;
 - CPV in B decays from the new physics (non KM).
 - Lepton flavor violations in τ decays.
- They will help to diagnose (if found) or constrain (if not found) new physics models.
- $B \rightarrow \tau \nu$, $D \tau \nu$ can probe the charged Higgs in large tan β region.
- Physics motivation is independent of LHC.
 - If LHC finds NP, precision flavour physics is compulsory.
 - If LHC finds no NP, high statistics B/τ decays would be a unique way to search for the >TeV scale physics (=TeV scale in case of MFV).

There are many more topics: CPV in charm, new hadrons, ...

Super B Factory Motivation 2

• Lessons from history: the top quark

Physics of top quark		b	u, c, t	d	(V_{ud})	V_{us}	V_{ub}
First estimate of mass: BB mixing Direct production, Mass, width etc. Off-diagonal couplings, phase	→ ARGUS → CDF/D0 → BaBar/Belle	<u>ā</u> ($v = v + \overline{u}, \overline{c}, \overline{t}$	<mark>Б</mark>	V _{cd} V _{td}	V_{cs} V_{ts}	$egin{array}{c} V_{cb} \ V_{tb} \end{array} ight)$

• Even before that: prediction of charm quark from the GIM mechanism, and its mass from K⁰ mixing

Recent update of the physics reach with 50 ab⁻¹ (75 ab⁻¹): Physics at Super B Factory (Belle II authors + guests) hep-ex > arXiv:1002.5012 SuperB Progress Reports: Physics (SuperB authors + guests) hep-ex > arXiv:1008.1541

Accelerator

The KEKB Collider & Belle Detector

The last beam abort of KEKB on June 30, 2010

→ Can start construction of SuperKEKB and Belle II

Strategies for increasing luminosity

Collision with very small spot-size beams

Invented by Pantaleo Raimondi for SuperB

Machine design parameters

noromotoro		KEKB		SuperKEKB		unita	
parameters	parameters		LER HER		HER	units	
Beam energy	Eb	3.5 8		4	7	7 GeV	
Half crossing angle	φ	11		41	.5	mrad	
Horizontal emittance	٤x	18	24	3.2	4.3-4.6	nm	
Emittance ratio	κ	0.88	0.66	0.27	0.25	%	
Beta functions at IP	β_x^*/β_y^*	1200/5.9		32/0.27	25/0.31	mm	
Beam currents	l _b	1.64	1.19	3.60	2.60	А	
beam-beam parameter	ξ _y	0.129	0.090	0.0886	0.0830		
Luminosity	L	2.1 x 10 ³⁴		8 x	10 ³⁵	cm ⁻² s ⁻¹	

- Small beam size & high current to increase luminosity
- Large crossing angle
- Change beam energies to solve the problem of LER short lifetime

Detector

Requirements for the Belle II detector

Critical issues at L= 8 x 10^{35} /cm²/sec

- Higher background (×10-20)
 - radiation damage and occupancy
 - fake hits and pile-up noise in the EM
- Higher event rate (×10)
 - higher rate trigger, DAQ and computing
- Require special features
 - low $p \mu$ identification \leftarrow s $\mu\mu$ recon. eff.
 - hermeticity $\leftarrow v$ "reconstruction"

Solutions:

- Replace inner layers of the vertex detector with a pixel detector.
- Replace inner part of the central tracker with a silicon strip detector.
- Better particle identification device
- Replace endcap calorimeter crystals
- Faster readout electronics and computing system.

TDR published arXiv:1011.0352v1 [physics.ins-det]

Vertex detector upgrade: PXD+SVD

- Configuration: 4 layers → 6 layers (outer radius = 8cm→14cm)
 - More robust tracking
 - Higher Ks vertex reconstr. efficiency
- Inner radius: $1.5 \text{cm} \rightarrow 1.3 \text{cm}$
 - Better vertex resolution
- Sensors of the two innermost layers L1+L2: DEPFET Pixel sensors → PXD
- Layers 3-6: normal double sided Si detector (DSSD) →SVD
- Strip readout chip: VA1TA \rightarrow APV25
 - Reduction of occupancy coming from beam background.
 - Pipeline readout to reduce dead time.

Vertex Detector

DEPFET: http://aldebaran.hll.mpq.de/twiki/bin/view/DEPFET/WebHome

DEPFET		r = 10mm
	Layer 1	r = 14mm
	Layer 2	r = 22mm
DSSD		
	Layer 3	r = 38mm
	Layer 4	r = 80mm
	Layer 5	r = 115mm
	Layer 6	r = 140mm

Mechanical mockup of pixel detector

Prototype DEPFET pixel sensor and readout

A prototype ladder using the first 6 inch DSSD from Hamamatsu has been assembled and tested.

Barrel PID: Time of propagation (TOP) counter

TOP image

Pattern in the coordinate-time space ('ring') of a pion hitting a quartz bar with ~80 MAPMT channels

Time distribution of signals recorded by one of the PMT channels: different for π and K

TOP (Barrel PID)

- Quartz radiator
 - 2.6m^L x 45cm^W x 2cm^T
 - Excellent surface accuracy
- MCP-PMT
 - Hamamatsu 16ch MCP-PMT
 - Good TTS (<35ps) & enough lifetime
 - Multialkali photo-cathode \rightarrow SBA
- Beam test in 2009
 - # of photons consistent
 - Time resolution OK

photon detector.

Aerogel RICH (endcap PID)

Radiator with multiple refractive indices

How to increase the number of photons without degrading the resolution?

Focusing configuration – data

Need: Operation in a high magnetic field (1.5 T), pad size 5mm Baseline detector: large active area HAPD of the proximity focusing type 30 ± 0.5

Another candidate: SiPM

64 SiPMs

20 mm

Another sensor candidate: SiPMs (G-PAD), easy to handle, but never before used for single photon detection (high dark count rate with single photon pulse height) → use a <u>narrow time window</u> and <u>light</u> concentrators

Cherenkov ring with SiPMs

First successful use of SiPMs as single photon detectors in a RICH counter!

NIM A594 (2008) 13

KLM upgrade in the endcaps

y-strip

plane

Scintillator-based KLM (endcap)

- Two independent (x and y) layers in one superlayer made of orthogonal strips with WLS read out
- Photo-detector = avalanche photodiode in Geiger mode (SiPM)
- \sim 120 strips in one 90° sector (max L=280cm, w=25mm)
- ~30000 read out channels
- Geometrical acceptance > 99%

13 countries/regions, 54 institutes

300 collaborators, >100 from Europe

- •Austria: HEPHY (Vienna)
- •Czech republic: Charles University in Prague
- •Germany: U. Bonn, U. Giessen, U. Goettingen, U. Heidelberg, KIT Karlsruhe, LMU Munich, MPI Munich, TU Munich
- •Poland: INP Krakow
- •Russia: ITEP (Moscow), BINP (Novosibirsk), IHEP (Protvino)
 •Slovenia: J. Stefan Institute (Ljubljana), U. Ljubljana, U. Maribor and U. Nova Gorica

A sizeable fraction of the collaboration: in total >100 collaborators out of $\sim 300!$

SuperKEKB/Belle II funding Status

KEKB upgrade has been approved

- 5.8 oku yen (~MUSD) for Damping Ring (FY2010)
- 100 oku yen for machine -- Very Advanced Research Support Program (FY2010-2012)
- Continue efforts to obtain additional funds to complete construction as scheduled – getting very good signs from the government: green light from the cabinet!

Several non-Japanese funding agencies have already allocated sizable funds for the upgrade.

KEKB upgrade plan has been approved

June 23, 2010 High Energy Accelerator Research Organization (KEK)

The MEXT, the Japanese Ministry that supervises KEK, has announced that it will appropriate a budget of 100 oku-yen (approx \$110M) over the next three years starting this Japanese fiscal year (JFY2010) for the high performance upgrade program of KEKB. This is part of the measures taken under the new "Very Advanced Research Support Program" of the Japanese government.

"We are delighted to hear this news," says Masanori Yamauchi, former spokesperson for the Belle experiment and currently a deputy director of the Institute of Particle and Nuclear Studies of KEK. "This three- year upgrade plan allows the Belle experiment to study the physics from decays of heavy flavor particles with an unprecedented precision. It means that KEK in Japan is launching a renewed research program in search for new physics by using a technique which is complementary to what is employed at LHC at CERN."

> [Media Contact] Youhei Morita, Head of Public Relations Office, KEK tel. +81-29-879-6047

Construction Schedule of SuperKEKB/Belle II

Early November: taking out the SVD2 – vertex detector

In the meantime: also central drift chamber is out

Belle has been rolled out in December to the parking position in the Tsukuba hall – waiting for the assembly to start...

Luminosity upgrade projection

Summary

- B factories have proven to be an excellent tool for flavour physics, with reliable long term operation, constant improvement of the performance, achieving and surpasing design perfomance
- Major upgrade at KEK in 2010-14 → SuperKEKB+Belle II, L x40, construction started
- Physics reach updates available
- Expect a new, exciting era of discoveries, complementary to the LHC

