Diamond Beam Monitor Simulation

Luka Kanjir
Pixel General Meeting
16/11/2015

- Diamond Beam Monitor
- Two streams for luminosity monitoring, H-stream and T-stream
- H-stream simulation
- Simulation results
- Possible ways to continue

 Diamond and silicon sensors for beam spot, background monitoring and bunch-by-bunch luminosity monitor

8 telescopes, 6 diamond, 2 silicon, 3+1 at each side of ATLAS with 3 modules per telescope,

each module with FEI4B readout chip

- 3.2<|n|<3.5, first diamond based tracking detector
- ~90 cm from IP on both sides, ~70 mrad angle
- Detector should be able to recognize if the particle is from background or from IP
- Part of pixel detector
- The active area of module is \sim 89% (20x16.8 mm^2)
- 26880 pixels (80x336), $50.250 \,\mu\text{m}^2$ pixel size
- Position sensitive detector with time resolution of 25 ns

DBM as luminosity detector

- There are two streams envisage for luminosity measurements
- Data that comes from FE-I4B chip are analyzed in two separated streams T-stream and H-stream
- **T-stream** (trigger-based stream) will be used for particle counting approach
 - detailed information: coordinates and ToT
 - developed in second stage
- H-stream (HitOr based stream) event counting approach
 - have single bit information 1 or 0 (hit or no hit)
 - possible to include or exclude individual pixels
 - this is what is studied in this work

- Active surface size defines acceptance → this means that the calibration has to be done for each size of active area
- The active area changed in way: starting from the center of chip, extending a given number of columns

- For this study the Monte Carlo samples were used
- The samples were:
 - -mc15 13TeV.159000.ParticleGenerator nu E50.recon.RDO.e3711 s2576 s2132 r6565
 - -mc15_13TeV.159000.ParticleGenerator_nu_E50.recon.RDO.e3711_s2576_s2132_r6566
 - -mc15_13TeV.159000.ParticleGenerator_nu_E50.recon.RDO.e3711_s2576_s2132_r6567
 - -mc15_13TeV.159000.ParticleGenerator_nu_E50.recon.RDO.e3711_s2576_s2132_r6568
- For different samples have $\langle \mu \rangle = 2$, 20, 40 and 80
- Number of events studied here was 10 000

Number of hits in chip 0 for different $<\mu>$

- Plots shows event distribution versus number of hits and versus active area of detector
- As $<\mu>$ increases, there are more and more events in which the number of hits in chip is higher

Event probabilities for three chips

probability_for_chip_1

probability_for_chip_2

- This histograms shows how event probabilities for chips depends upon the active area of chip
- The probability that the chip is hit was calculated as ratio between non empty events and number of recorded events

$$r_{\rm OR} = \frac{N_A}{N_E}$$

• For higher $<\mu>$, event probability is rising much faster with increasing active area of detector

Event probabilities for different chips with $<\mu>=2$

 $\mu=2$

- c0 and c12 are the chips closest to the IP, c2 and c14 are chips which are the farthest from IP
- Event probabilities for chips closer to IP are higher

12 13 14 | | |

Event probabilities for different chips with $\langle \mu \rangle = 20$, 40 and 80

Calibration constant, c

To calculate the µ_vis the following equation was used

$$\mu^{\text{vis}} = -\ln(1 - r_{\text{OR}})$$

• were known from Monte Carlo sample, so with it and μ^{vis} the calibration constant was calculated from

$$c = \frac{\mu^{vis}}{<\mu>}$$

• The error estimate for μ^{vis} is given by

$$\sigma_{\mu_{\mathrm{OR}}^{\mathrm{vis}}} = \sqrt{\frac{1}{N_E}} \cdot \sqrt{\frac{r_{\mathrm{OR}}}{1 - r_{\mathrm{OR}}}}$$

• The error for c is then just

$$\sigma_{c_{\mathrm{OR}}} = \frac{\sigma_{\mu_{\mathrm{OR}}^{\mathrm{vis}}}}{<\mu>}$$

- Next table shows the calibration constants and visible μ with errors for chip 2
- The active area for this data is 32.5 % of the chip

<µ>	μ_vis	Δ μ_vis	С	Δc	
2	0.1489	0.0040	0.0745	0.0020	
20	1.5498	0.0192	0.0775	0.0009	
40	2.9431	0.0424	0.0735	0.0011	
80	6.2146	0.2180	0.0777	0.0027	

Calibration constant for chip 2 is ~7.5 %

Calibration constants for all chips placed in telescopes (T0 to T7) for $<\mu>=20$ and active area 32.5 %

plane	c of T0	c of T1	c of T2	c of T3	c of T4	c of T5	c of T6	c of T7
0	0.0844	0.0810	0.0831	0.0852	0.0867	0.0831	0.0854	0.0861
1	0.0806	0.0779	0.0789	0.0782	0.0815	0.0785	0.0779	0.0829
2	0.0775	0.0727	0.0744	0.0746	0.0767	0.0747	0.0757	0.0779

Farthest from the IP

- From above table it can be seen that chips which are closest to IP have have similar calibration constants
- Chips which are farthest from IP have in average smallest calibration constants

Chip 2 calibration constant, c

Calibration constant for chip 2

- The plot shows calibration constants for chip 2 for different <µ>
- This is done so that the simulation could be tested
- For <μ> = 80 the calibration constant is just calculated up to active area ~35 % because the statistics was to low, and with my script it was not possible to get the results which would make sense
- Calibration constants for different <µ> agree within an error

Telescope event probabilities

probability for telescopes 0 AND 4

- This plots shows probability that telescopes detects tracks
- Telescope 0 and 4 are on different sides of ATLAS
- Number of tracks trough one telescope is equal to smallest number of hits among the three chips of telescope
- When the calibration constants for single chip is determined, it is possible to investigate telescopes or even the different relations between telescopes
- If this two plots are compared, the main difference is that there are less events which have tracks in both telescopes 0 and 4

Summary

- The calculation were made on Monte Carlo simulations for different $<\mu>$ with 10 000 events
- Calibration constants are very similar for the chips in the same layer, it is $\sim 8\%$
- The calibration constant is consistent for all $<\mu>$ samples
- After good understanding the chips, it is possible to investigate telescopes and even the different combinations of them