ATLAS Beam Conditions Monitor "First Beams"

Daniel Dobos for BCM CERN 07.10.2008

ATLAS Week October 2008, CERN

D.Dobos

CERN

BCM "First Beams"

07.10.2008

Outlook

Introduction / Reminder:

- Matche ATLAS BCM Collaboration
- Motivation
- Measurement Principle
- Ø Detector Material
- Detector Assembly
- Installation
- "First Collisions" Goal

First Beam(s) Results:

- Mardware Status
- ☑ The "GSM Beam"
- ☑ The "Pixel Beam"
- ☑ The First Beam
- Getting Ready for Second Beam

BCM "First Beams

miting mon might's amazzam wan rotinan smitionez man oramoio sor prevent oixastrous ram baravier and i exam emit mit

ATLAS BCM Collaboration

- JSI, Ljubljana V. Cindro I. Dolenc, A. Gorišek G. Kramberger B. Maček I. Mandić E. Margan M. Mikuž M. Zavrtanik Univ. Toronto M. Cadabeschi
 - W.Trischuk
 - D. Tardif

- Univ. of Applied Science -Wiener Neustadt Join H. Frais-Kölbl E. Griesmayer M. Niegl

BCM "First Beams"

OSU, Columbus H. Kagan S. Smith

- D. Dobos
- K. Lantzsch
- 💡 H. Pernegger
- E. Stanecka
- P. Weilhammer

07.10.2008

CERN

D.**D**obos

Motivation

- SppS / LEP / RHICH / HERA / Tevatron experiences and ATLAS simulations teach to protect detectors from beam incidents
- instantaneous beam conditions measurement to distinguish each bunch crossing between: Mormal collision
 - boom and (tiny)

CFRN

- ☑ beam gas (tiny)
- 🗹 beam halo
- ☑ pilot beam (5×10⁹p@450GeV) loss
- ☑ beam loss
- magnets have large time constants (~ms)
- generate warning / alarm / abort signals early enough to abort beam before incident

BCM "First Beams'

07.10.2008

Measurement Principle

- use TOF measurement to distinguish between collisions and background events (beam gas/halo, TAS collimator scraping, ...)
- Pilace 2 detector stations at z = ±1.84 m and r = 5.5 cm ⇒ Δt = ~12.5 ns and η = ~4.2
 - \mathbf{V} nominal interaction at $\Delta t = 0$ ns

 \Box TAS collimator interaction at $\Delta t = \pm 12.5$ ns

Detector Material

Diamond sensor: pCVD (RD42)

Why diamond?

CERN

07.10.2008

6

- $\frac{1}{2}$ high resistivity \rightarrow high active area
- $\frac{1}{2}$ low dielectric constant \rightarrow low capacitance

BCM "First Beams"

- Iow leakage current → low noise
- I room temperature → no cooling

Detector Assembly

PCVD (RD42) sensor: 10 × 10 (contacts: 8×8) mm² × 500 μm

2 pCVD diamond sensors back-2-back

> Ist stage:Agilent MGA-62653 500 MHz, 22 dB

> > 07.10.2008

2nd stage: Mini Circuits GALI-52 I GHz, 20 dB

Installation

cruciform

BCM "First Beams"

BCM stations

beam pipe

4 modules installed to the middle BPSS cruciform at each detector side

Pixel

 $iggside{s} z = \pm 1.84 \text{ m and } r = 5.5 \text{ cm}$

4 HV and 4 signal cables per detector side through Pixel PPI end-plate

D.Dobos

CERN

07.10.2008

8

BPSS

"First Collisions" Goal

Detectors:

D.Dobos

CFRN

- detectors and readout on since one month
- 800V bias voltage with magnet field off 1000V if solenoid is on
- ✓ stable voltages and temperatures
- without solenoid field occasionally (once every 3 days)
 HV trips of C-side Y- detector (erratic dark currents)
- two data streams fixed, PP2 access before beam abort showed no obvious cable swap, could be easily swapped but waiting for access to understand problem

BCM "First Beams"

07.10.2008

The "GSM Beam"

- GSM mobile phones near BCM USA15 rack:
 - ☑ very high (~100,000 Hz) count rates on high and low gain if
 - ☑ can fire one of the two beam abort logics DSS alarm
 - \mathbf{V} significantly improved with copper tape shielding of ROD and opto- reciever \rightarrow ROD connection (twisted-pair flat-ribbon)
 - Solution of the still visible with high power phones directly on cable
 - shielding of cables and ROD case in preparation (cooling fan slots)

The "Pixel Beam"

- pickup of Pixel calibration runs (digital scan):
 - Moderate (~100 Hz) count rates on high and low gain channels when pixel performs calibration scans
 - possible to tell from BCM rates start-/stop-time, side and position of a pixel digital scan on two PP0 rows

9000 8000

☑ no signs of any pickup during normal data taking

not yet fully understood

The First Beam

- TDAQ chain needed new firmware with additional latency: ready on morning of first beam - after quick test and seen slight instability decided to go back to stable version DCS readout: 100_**Ş**
 - Model in the second of the sec
 - BCM peak in count rates during splash events on 10.09.08
 - Image: Search and Comparison of the search and t were available during first beam

Entries

Mean x

Mean y

RMS x

RMS y

250

BCM "First Beams'

time [ECR]

200

ECR - # of triggers colorcoded

- First BCM self-triggered and readout events at 14.09.08:
 - BCM_AtoC : Halo trigger
 BCM_CtoA : Halo trigger
 BCM_Wide : Wide time cuts for non-IP collision
 BCM_Comb (3 bits of multiplicity)
 - generated from 9 trigger bits

Trigger vs ECR - refreshed

 $C \rightarrow A$

D.Dobos

High Threshold C

High Threshold A

Multiplicity MSB C

Multiplicity LSB C

Multiplicity MSB A

Multiplicity LSB A

Wide Time Window

100

CERN

trigger bit

07.10.2008

14

- BCM individual channel self-triggered timing runs 15.09.08:
 - reading out 31 BCs: measured self-triggered delays for all eight detectors (Loop: ROD -> CTP -> ROD)
 - ☑ pulse LE time flat (known bug at time bin 32)
 - **v** pulse width peaks at 3.5 ns
 - \mathbf{V} latency 59 LVLIA I7 = 42! one off wrt. calculation (16)
 - ✓ hits concentrated on one BC (~1/10)

- seeing first effect of solenoid field on 16.09.08:
- A-side average hit rates decreased by about 10 counts/s
- C-side average hit rates decreased by about 2 counts/s
- Ieakage current decreased for worst module from 0.8 μA to 0.025 μA

BCM "First Beams"

returns to original
 leakage currents and hit
 rates with switching
 solenoid off

Save Settings

CERN

Y Axes

Hit Rates Sums

D.Dobos

Time Range

07.10.2008

16

1:1

log

+

Other

- all BCM channels self-triggered and readout at 17.09.08:
 - IC Contemnet State Contemnet State Stat
 - BCM ready and timed in for beam on 17.09.
 - improving stability and operation comfort in the last weeks

CERN

ECR - # of triggers colorcoded

07.10.2008

comics difficult due to low acceptance

BCM "First Beams'

