PP1 PCB Test Methods, Specifications And Limits E.Margan, IJS, F-9

1) Connectivity and Capacitance Test

- a) connection from the connector to the capacitance (no resistance measured)
- b) short or R up to $2 M\Omega$ between any two lines or ground
- c) capcitance value test, from 10 pF to approx. $20 \,\mu\text{F}$, resolution 10 pF, absolute error < 1 %.

The test sequentially activates each line and checks all other lines for possible error. For details, see the block circuit diagram in Fig.1.

2) High-Voltage Test

- a) sustained 500 Vdc test for ~ 30 s on the HV-Bias line (risetime 0.5 s)
- b) leakage current from HV-Bias to HV-return, C=15 nF at 500 V, $Z_{\text{in}}=1 \text{ M}\Omega$, $V_{\text{in max}}=10 \text{ V}$, I_{lk} max $=10 \,\mu\text{A}$, resolution 0.3 nA.
- c) leakage current from HV-Bias to Ground at 500 V, $I_{\rm lk}$ max = 10 μ A, resolution 0.3 nA ($Z_{\rm in}$ is virtual ground, amplifier $V_{\rm ofs}$ < 100 μ V, $I_{\rm in}$ < 25 pA).

Other lines are protected by the PCB design layout and are not tested for leakage. For details, see the block circuit diagram in Fig.2.

3) Trace Resistance Test

4-point Kelvin resistance measurement from the connector to the LM-Tape solder pads; each line is sequentially activated by 100 mA and the voltage drop is measured by a 2 V range, 100 μV resolution ADC, resulting in a 20 Ω range and 1 m Ω resolution, with absolute error < 0.5 %.

For details, see the block circuit diagram in Fig.3.

Fig.1: Capacitance test

Fig.2: High-Voltage test

Fig.3: Line Resistance test