RADIATION HARD ELECTRONICS

F. Anghinolfi, CERN/EP

- Radiation Effects
- RadHard Technologies, Design Examples
- SEU
- Design sensitivity to radiation

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Radiation Effect in Si/SiO2

TOTAL DOSE EFFECTS

Silicon : displacement damage Silicon oxide : (positive) trapped charges Si/SiO2 interface : charges sign depends on bias

TRANSIENT EFFECTS

Single Event Upset Single Event Latchup

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

"Today" Rad-Hard Technologies

AIM : RADIATION RESISTANCE BEYOND 1Mrads

A FEW COMPANIES ARE ACTIVE IN THE WORLD : ATMEL (Temic), HONEYWELL, LAUREL, MARCONI, TRW

TWO COMPANIES EXPRESS INTEREST IN HEP APPLICATIONS : ATMEL (Temic), HONEYWELL

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

"Today" Rad-Hard Technologies

(*) compare to other radiation environment applications. Small compare to standard process

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

"Today" Rad-Hard Technologies

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Radiation Effects in N-MOS

NMOS transistor

Radiation Effect in P-MOS

PMOS transistor

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

BIAS EFFECTS

ANNEALING

Slow release of trapped charges
Activated by Temp.
Relative recovery of Oxide/Interface traps may lead to "rebound" (N-channel)

LEAKAGE CURRENT EFFECT

SINGLE EVENTS

BIPOLAR TRANSISTOR

gain B NPN 1,2µm.1,2µm

120

100

Silicon crystalline structure defects with neutrons : 1) Shorter Minority Carriers Lifetime

(2) Surface Current Increase

Gamma Degradation

RAD-HARD by technology

Specific Oxide and Si/SiO2 treatments

Low Temp Oxidation
Low Temp Oxide Annealing
Trap sites filling at Si/SiO2 interface

Latch-up protection

Low resistance epitaxial layerSOI structure

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

DMILL-SOI STRUCTURE

- SOI STRUCTURE PREVENTS LATCH-UP, LIMITS SEU
- RADIATION HARDENED OXIDES

Dmill : Isolated Trench Structure

Dmill : Mixed Digital-Analog Technology

Parameter	Typ value	Unit	Description		
MOS transistors					
Leff N	0.72	μm	Electrical length of a 0.8 µm N channel transistor		
Leff P	0.70	μm	Electrical length of a 0.8 µm N channel transistor		
VTN	0.93	v	Threshold voltage of a 0.8µm N channel transistor		
VTP	-0.80	v	Threshold voltage of a 0.8µm P channel transistor		
IDSN (0.8µm)	8.30	mA	Drain current for a 25/0.8µm N transistor with VGS=VDS=5.0V		
IDSP (0.8µm)	4.60	mA	Drain current for a 25/0.8µm P transistor with VGS=VDS=-5.0V		
BVDSS (1µA)	>8.00	V	Drain / Source breakdown voltage at ID = 1.0µA		
VTN Field	>10.0	v			
VTP Field	>10.0	v			
NPN Bipolar		8			
Beta (1.2x1.2)	250	NU	NPN 1.2x1.2 ideal forward beta		
VEARLY	96	v	NPN Forward early voltage		
BVCE0	5.70	v	Breakdown of collector/emitter with base open		
BVCB0	17.0	v	Breakdown of collector/base with emitter open		
P-JFET	500	22			
VPPJ (1.2µm)	1.20	V	Pinch-off voltage of a 100/1.2 P-JFET		
GDPJ (1.2µm)	1.135	μS/μm	Drain transconducatnce of a 100/1.2 PJFET (VGS=0V; VDS=3V)		
OXIDES	36	17	261 Y		
E _{rx}	17.5	nm	Gate oxide thickness		
	170		Care and to this have		
EField	4/0	nm	Gate oxide thickness		
E _{CHD8}	42.0	nm	Gate oxide thickness		
RESISTORS	118	la muna	D+ maintivity		
Rp+	2650	/square	D contributer		
Rp.	3350	square	Partecia terra esclutiva		
Rectrins	1650	/square	Extransic base resistivity		
R POL	2.35	/square	Poly gate resistivity		
R _{MI}	0.050	/square	Metal I resistivity		
R _{M2}	0.040	/square	Metal2 resistivity		

N-MOS Leakage Prevention in DMILL

Typical DMILL VT Shifts

VTN shows the typical "rebound" effect for N-MOS transistors, which continues during annealing

VTP shows larger shifts because of additional Δ Vot Δ Vit drifts. -200mV is the max. drift at 10Mrads

Dmill : Analog Characterics (noise)

BJT

Noise figures for NMOS, PMOS, BJT devices (before & after irradiation to 10Mrads)

Pmos

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Dmill : SEU resistance

Storing element	SEU threshold (MeV/(mg/cm ²))	Reduction factor
Memory Cell	15	200
DFF cell	70	130
Combinatorial	70	40

* Compared to equivalent in standard bulk process with same device features

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Example of Chip Design in DMILL

						-19-	atlas	ABCD2T				1
	1		HIN-1-124					14 1				
			348-42404 (d2) 348-42-548 (d2)									= (
	- 1											-
												-
			CHARLES OF CALL									- 🚟
			34142994 964 34142994 601									-
												1
			anne-son die Anne-son die									- 100
			3404-244 (C)									1
												1
			348-42998 (C) 348-4298 (C)									-
												-
			941-40-544 9410-42-944 (4C)									
			3H1-1-224 (45-1 3H10-1-224 (45-1									-
												-
			ana san ar ana san ar									-
			3H1H3324 (417) 3H1H3-37H (417)								er si	-
												-
.			anderen (C) Anteren (C)									1
												-
											말을	-
富日			9804-988 807 98042-988 807									-
			CHURCH HEAL CHURCH HEAL CHURCH HEAL			351000000					an paul	- 1
			3404-244 (C) 340-4244 (C)									-
			3804-328 80) 38042-988 80)			و ال			<u></u>			-
<u>ات</u>												
E											100	
				<u>, </u>	<u>چ</u> ب						1	
		1888 HS -	I	ال الشعط ا	j							-
			. Second		2 2 03					N.C. DATE NO.		

• Mixed mode SCT Front-end chip (ABCD, 250K Trans.)

> • 10Mrads, 3x10**14 neutrons/cm² guaranteed

ABCD Chip Blocks

Bipolar

Fast Frontend (25ns peaking Time) Low Noise (1500 el @ 20pF CL)

CMOS

40 MHz clock 3.2 uS data retention Data compression Logic

51 mm2 P < 0.5w

Performance Degradation (gain)

24 GeV protons 3 x 10¹⁴ p/cm² Neutrons 2 x 10¹⁴ n/cm²

10 keV X-ray 10 Mrad

Title:	Title:	Title:
C'Lardi Glarive Preamp.eps	GainSh24NoErr.eps	DNAEDMODXRAYW/TRIM0215gainvspba.eps
Creator:	Creator:	Creator:
Denoise:	Preview:	Rocker:
This EPS picture was not saved	This EPS picture wan tasved	This EPS picture was not saved
with a preview included in it.	with a preview included in it.	with a preview included in it.
Comment:	Comment:	Comment:
This EPS picture will print to a	This EPS picture will print to a	This EPS picture will pint to a
PostScript print: but not to	PostScript printer, but not to	PestScrupt prints; but not to
other types of printers.	other types of printers.	other types of printers.

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Performance Degradation (noise)

24 GeV protons 3 x 10¹⁴ p/cm²

Neutrons 2 x 10¹⁴ n/cm²

10 keV X-ray 10 Mrad

Tite: C:Lant'iransparencien'NoisevsPreamp.eps Creator: ROOT Version 2.21/08 Prime FBS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostSorpt printer, but not to other types of printers.	Tele: NoiseSh24NoErr.eps Creator: ROOT Version 2.2108 Provide: Sector 2.2008 Whith a preview notided in it. Commerc: This EPS picture will print to a PostBorge partner, but not to Der types of printens.	Title DVAGCMODXRAVW/TRIM/215/encvspba.eps UVAGCMODXRAVW/TRIM/215/encvspba.eps Creator ROOT Vestion 2.21/08 Phile Stream Context was not awed with a preview individed in it. Comment: This EPS picture will print to a PoadSorg printer, but not to their types of printers.

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Bipolar Beta degradation

24 GeV protons 1.1 x 10¹⁴ p/cm²

24 GeV protons

3.3 x 10¹⁴ p/cm²

Title: (Rtmm.xls) Creator: (Windows NT 4.0) Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostSoript printer, but not to other types of printers. Title: (Strmm_yes.xls) Creator: (Windows NT 4.0) Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

ABCD - Digital Tests

Expected Frequency loss after irradiation # 15-20 MHz

Higher Frequency loss after irradiation is due to design issue

ABCD - Digital Tests

Test vectors were extracted directly from the Verilog models and applied to the ATS tester.

100 000 test vectors run to validate the logical functionality

Maximum working frequency for individual blocks and for the whole chip were evaluated.

Margins for timing and I/O signal levels were evaluated.

Test #	Chip	Chip #2) #4	Test Description
	Α	В	Α	В	
1	62.5	47.6	66.7	50.0	Send Id mode, address decodin
2	x	47.6	X	52.6	BC reset tests
3	58.8	45.4	62.5	50.0	DTM mode, no hit readout
4	50.0	47.6	58.8	50.0	DTM, single hit readout
5	58.8	47.6	58.8	47.6	DTM, multiple hit readout
6	58.8	47.6	52.6	50.0	Accumulator tests
7	34.5	34.5	45.4	45.4	Data Compression Logic test

Maximum working frequency (in MHz):

x - test was not run

A - L1 and BC counters were excluded from data comparison

B - full data comparison

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Dmill : Example of chips

Main Features:

- •16 bit/25KHz Sigma-Delta A/D converter
- •Max sample rate: 50 KHz
- Resolution: 16 bit
- •SNR > 96
- Input range: 2 V
- •Clock frequency: 12.8 MHz
- •Operating temperature range: 0-125 °C
- Supply voltage: 5 V

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Dmill : Example of chips

Functionality

•Designed to protect CMOS commercial devices (DUPs) against SEL: it contains a power switch to disconnect power supply to the DUP and a control logic to program the critical threshold current and the allowed over-threshold time

Main Features:

- •Max threshold current: 100 mA
- Over-threshold time interval: 0.1/10 ms
- Power consumption: <1 mW at 3.3 V
- Operating temperature range: 0-125 °C
- Supply voltage: 3.3 V 5 V
- •Area: 10 mm²

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Dmill : Example of chips

DMILL experience

Centre of competence of TEMIC Semiconductors for DMILL technology (SOI BiCMOS 0.8µm - qualified up to 10 Mrad total dose) since the end of 1998 Design activity:

 Analogue TRACK: Testing Rad-hard Analog Cells & design Kit SELP: Single Event Latch-up Protector
 Mixed SDADC16: 16 bit Sigma Delta Analog to Digital Converter RAD-ADC: 12bit/3MHz A/D Converter
 Digital CASA: CAN 2.0B protocol interface macro-cell I2C: I2C protocol slave interface macro-cell 80C51: 80C51 CPU macro-cell

Analogue library Digital library and Design Kit improvement

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Honeywell 0.8um

Title: (diag_abch2_floorplan.eps) Creator: Adobe Illustrator(TM) 7.0 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

SCT readout in ATLAS

ABC Radiation Results

55

 13 p/cm² corresponds to a dose of 10 MRad. Fluence rate was 5.10¹⁰ p/cm²/s.

- Samples cooled down to 0-3° C during irradiation and stored in freezer afterwards.
- Curves show maximum frequency at which the slowest TV passed as a function of the dose.
- Upper curves: VDD=4.4
 V, middle curves:
 VDD=4.0 V, lower
 curves: VDD=3.6V

Honeywell 0.8um Bulk

0.8 um CMOS bulk rad-hard technology available

Layout is fully compatible with Rad-Soft, equivalent size features technologies (HP, ...)

Guaranteed 1Mrads by manufacturer

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Honeywell 0.8um SOI

0.8 um CMOS SOI rad-hard technology available

SEL/SEU resistance is improved by thin SOI structure

Layout not directly compatible with rad-soft equivalents

Guaranteed 1Mrads by manufacturer

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

ASDBLR

6.5ns preamp, shaper, tail cancellation, discriminator

8 channels, 36mW/ch

Irradiated up to 1x10**14n/cm2

No change in 3fC threshold

TRT readout in ATLAS

ASDBLR Data

DTMROC

16 channels, 9 bits per channel pipeline memory

Internal DLL (3,2ns) for precise time identification

Analog functions : DACs, calibration pulse (shaper) for ASDBLR

TRT readout in ATLAS

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Pixel

FE-D:

18x160 pixel cells 50x400um2

Total 725000Tr.

7.4 x 11 mm2

Pixel = preamplifier, discriminator timestamp, etc ...

Pixel readout in ATLAS

Pixel

TTC-Rx

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

General Design Issues

DIGITAL

• Irradiation results in additional speed degradation (Vt drift, mobility degradation)

• Power consumption change before/after irradiation not under control (design dependant)

• SEU is an issue

ANALOGUE

• All aspects of "analogue" functions are affected by radiation : noise, offsets, stability, BW, operating point

• Control over biasing voltages or currents (when possible) allows some compensation of radiation effects

• SEU (generally) not an issue

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

SEU design solutions

Different solutions depending on "severity"

- SEU-free logic :
 - double redundancy + major voting circuitry
 - simple redundancy + error detection
- SEU-detection :
 - Error detection techniques
 - Watchdog
- SEU at system level :
 - Redundancy & EDAC
 - Status Read & Reinitialisation
 - Watchdog & Reinitialisation

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

SEU resistant design

P6 P5 B Α P2 **P1** 0 N6 D* D N5 01 0 **N3** 'N4 Nl N2**P3 P4** WR

SEU tolerant RAM cell

HIT1 RAM cell

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

SEU risk vs. Application

SEU remedy is dependent on risk/cost :

In "LHC" Experiment :

SEU in data block is acceptable (add. Noise) SEU in control functions results in loss of function until reinitialisation is done

Redundancy implementation is limited by constraints on available space, system BW

In Space : Redundancy and error correction are generally used

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Digital Design Issue

Irradiation effect generally is additional speed penalty :

Avoid complex gates structures

Rad-Hard Technologies (low volume process) results in limited manufacturer control over technology (compared to standard process) :

> Avoid complex gates structures Avoid dynamic logic if not needed

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Digital Design Issue

Analog Design Issues

Analog Design Issues

Amplifier offset

If during operation under irradiation, Vgs1 is almost always less than Vgs2, Vt drifts for M1 or M2 are different :

Large input offset creation

This situation is frequent for comparators, used for input level detection, threshold discrimination, etc ...

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Analog Design Issues

Current mirror switching :

Vt drift on M2 depends on S1/S2 status during irradiation :

M2 current is different from M1 current if S2 closed, S1 open during irradiation

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

A First Summary

RAD-HARD TECHNOLOGY IS EFFECTIVE

• Proven functionality and performance up to "LHC Experiments" dose

BUT

- Low Volume Production is an issue for manufacturer
- Designs are not conventional (from HEP users side)
- Radiation environment not completely "understood"

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Threshold spread - does matching degrades after irradiation

24 GeV protons 3 x 10¹⁴ p/cm²

ler. Lans/MeansSpreadBefore.eps eator: DVT Version 2.2108 Eviden Eviden Not a pervise nuclear was not saved h a pervise nuclear in a interper pervise will print to a eliBorg partierer, but not to the types of printers.	The: C'Lan/MeansSpreadAfter aps Creator: ROOT Version 2.21/08 Preview With a preview included in it. Commen: This EPS picture will print to a PostSorpt printer, but not to other types of printers.	Tate: C'Lanitransparencies/MeansSpread/Itertrimmed.eps Creator: ROOT Versitor. 22108 Prevaire: White a preview incluster was not saved with a preview incluster visa incluster White a preview incluster incluster Data Providencies and preview in the a PostScrupt primer, but not to bet vigwes of primes.

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Threshold spread - does matching degrades after irradiation

Neutrons 2 x 10¹⁴ n/cm²

Title ThetadroxNoT.eps ROOT Version 2.2108 Preview: This EPS proteire was not saved with a preview included in it. This EPS proteire was not saved with a preview included in it. Other EPSS entry with print to a Peatscript printer, but not to Other types of printer.	Tite: TotAttribut.reps (FOOT Version 2.21/08 Preview: This EPS picture was not saved with a preview included in it. This EPS picture with picture a PresiScript printer, but not to dher types of pinters.	Title: TriAtterT sps ROOT Version 2.21/08 Preview: This EPS picture was not saved with a preview included in it. This EPS picture will picture and this EPS picture will picture and the EPS picture will picture and pastStripp pinters.

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

Threshold spread - does matching degrades after irradiation

10 keV X-ray 10 Mrad

Title: D:ABCDMODXRAYW7TRIM0215/matchnoirr.eps Creator: ROOT Version 2.21/08 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers. Title: D/ABCDMODXRAYW7TRIM0215/matcha10.eps Creator: ROOT Version 2.21/08 Phile BS picture was not saved with a proview included in it. Comment: This EPS picture will print to a PostSoript printer, but not to other types of printers. **Observations:**

•matching degrades more after proton irradiation compared to neutron irradiation for comparable fluences

•no degradation of matching after X-ray irradiation

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00

A Second Summary

RAD-HARD TECHNOLOGY IS :

- SEL/SEU resistance
- Foundry guaranties parameters drift values after irradiation

BUT

- Design time is "longer" than conventional technology
- Design characterisation & validation is "longer" than conventional technology

Radiation Hard Electronics - Francis Anghinolfi - CERN-EP - 12/04/00