P. Stari¢ & E.Margan Part 1 : Laplace Transform

1.12 Complex Integration Around Many Poles,
The Cauchy-Goursat Theorem

So far we have calculated a contour integral around one pole (simple or multiple).
Now we will integrate around more poles, either single or multiple ones.
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Fig.1.12.1: The cheese represents a regular Fig. 1.12.2 : Encircling the poles by contours
(=analytical ) domain R of a function which C.,C, ...,Cs , so that the regular domain of
has one simple pole in every hole. the function is always on the left side.

Cheese is a regular part of French meals. So we may imagine that the great
mathematician Cauchy observed a slice of Emmentaler cheese like that inFig. 1.12.1 (the
characteristic of this cheese is big holes) on his plate and reflected this way: Suppose all
that is cheese is an analytical or as we also say, a regular domain R of a functionF'(s) . In
the holes are the poles s; ---s;5 . We are not interested in the domain outside the cheese.
How could we "mathematically" encircle the cheese around the crust and around the rims of
all the holes, so that the cheese is always on the left side of the contour?

Impossible? No! If we take a knife and make a cut from the crust toward each hole,
without removing any cheese, we provide the necessary path for the suggested contour, as

shown in Fig. 1.12.2.

Now we calculate a contour integral, starting from the point A in the suggested
(counter-clockwise) direction until we come to the cut towards the first pole,s; . We follow
the cut towards contour (] , following it around the pole and then go along the cut again,
back to the crust. We continue around the crust up to the cut of the next pole and so on,
until we arrive back to point A and close the contour. Since we did not remove any cheese
by making the cuts, the path from the crust to the corresponding hole and back again cancel
out in this integration path. As we have proved byEq. 1.9.6 :

b a

/F(s)ds-l—/F(s)ds:O

a

Therefore, only the contour C' around the crust and the small contours C - -- Cs
around the rims of the holes containing the poles are what we must consider in the
integration around the contour in Fig. 1.12.2. From all these, the contour C' was encircled
counter-clockwise, while the contours C - - -C5 were encircled clockwise .
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We write down the complete integral :

]€+F(8) dS-i-j{OF(s) ds + +]{ F(s)ds=0 (1.12.1)

Cy

The value of the integral is zero, because along this circuitous integration contour we have
had the regular domain always on the left side. By changing the sense of the encirclements
of the contours C --- C5 , we may write Eq. 1.12.1 also in the form :

%mF(s) ds:?{CTF(s)d8+~-«—l—j§C5+F(s) ds (1.12.2)

When we changed the sense of encirclements, we changed the sign of the integrals ; this
allows us to put them on the right side with a positive sign. Now all the integrals have
positive (counter-clockwise) encirclements. Therefore the integral encircling all the poles is
equal to the sum of the integrals encircling each particular pole. By observing this equation
we realize that the right side is the sum of residues for all the five poles, multiplied by 27 .
Eq. 1.12.2 may also be written (for the general n-pole case) as:

% F(s)ds =2mj[res; + -+ + res,| = 2mj Z?"esi (1.12.3)
c+ =1

Eq.1.12.2 and 1.12.3, which are essentially important for the inverse Laplace
transform, are called the Cauchy-Goursat theorem.
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c+joo
1.13 Equality of the Integrals j{F(s) e’ ds and / F(s)e'ds
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Fig.1.13.1: The complex function magnitude, |F'(z)| = |1/z| . The resulting surface has been cut
between — jand + 1 to expose an arbitrarily chosen integration pathL , starting atz; = 0 — 0.5 and
ending at 2o = 0.5 + 50 . On the path of integration, the function|F'(z)| has a maximum value}M .

1 ./ \

Fig.1.13.2 : The complex domain of Fig. 1.12.1, showing Fig.1.13.3 : The section betweenz{ andz9

the arbitrarily chosen integration path L , which starts at of Fig. 1.12.1 is laid flat in order to show that

21 =0-70.5and ends at z9 = 0.5+ j0. the resulting integration area is smaller than
the area of the rectangle M x L .

The reader is invited to examine Fig. 1.13.1, where the function |F'(z)| = |1/z|,
having one simple pole at the complex-plane origin, was plotted. The resulting surface was
cut between — 7 and 1 to expose an arbitrarily chosen integration path L between
zi=x1+Jy1 =0—750.5and 2 = 29 4+ jp = 0.5 4 50 (see the integration path in the
z-domain plot in Fig. 1.13.2). Let's take a closer look at the area A between z; , 29 , | F'(z1)|
and |F'(z2)|, shown in Fig 1.13.3. The area A corresponds to the integral of F'(z) fromz; to
29 and it can be shown that it is always smaller than, or at best equal to the rectangle M L :
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21 29 Z9 22

/F(z)dz = /% g/ ’TZ‘ S/M]dz\:ML (1.13.1)
21 21 z1 21
) along the path L i

Here M is the greatest value of |F'(z)| for this particular integration path L, as shown in
Fig.1.13.3, in which the resulting 3-D area between 2, 22, |F(z1)| and |F(29)| was
stretched flat. So:

/F(z)dz g/ |F(z)dz| < ML (1.13.2)

Eq.1.13.2 is an essential tool in the proof of inverse L-transform via the
integral around the closed contour.

Let us now move to network analysis, where we have to deal with rational functions
of complex variable s = o 4+ jw. These functions have a general form :

S+ by 1 8™+ bys + by
s" 4+ ap_1 8"+ -+ ars+ ag

F(s) = (1.13.3)

where m < n and both are positive and real. Since we can also express s = R e/ (as can
be derived from Fig. 1.13.4), we may write Eq. 1.13.3 also in the form:

P(s) = 2 H by BT S+t R + by (1.13.4)
s) = : , : .13.
Rreint 4 q, 1 Rrlein=10 ... 4 gy Re? 4+ ag

According to Eq. 1.13.4, we have::

Rmei™Y 4 ... 4 by K
[F(s)] = Rreint 4 ...+ qq < Rn—m =M (1.13.5)

where K is a real constant and M is the maximum value of |F (s)‘ within the integration
interval, according to Fig. 1.13.1 and 1.12.3 (in [Ref. 1.10, p. 212] the interested reader can
find the complete derivation of the constant K).

l\jw
s$1 =01 +jw1:Rej6 Side — ] Lo
o1 = Rcosf w1 = Rsinf \
R= /(014 jw)(o1 — jwr) : X
= Vot +wi | N
0= arctan:—i (’71 — >c

Fig. 1.13.4 : Cartesian and polar representations of a complex number (note that tan §
is equal for ccw-defined 6 from positive real axis and for cw-defined 3 = 6 — 7).
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