P. Stari¢, E. Margan Inductive Peaking Circuits

2.1 The Principle of Inductive Peaking

A simple common-base transistor amplifier is shown in Fig.2.1.1. A current-step
source I is connected to the emitter; the time scale is referenced to the current-step
transition time at ¢ = 0 and normalized to the system time-constant, RC'. The collector is
loaded by a resistor R ; in addition, there is the collector-base capacitance Ccg, along with
the unavoidable stray-capacitance Cs and the load capaciatnce C' in parallel. Their sum is
denoted as C'.
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Fig.2.1.1: A common-base amplifier with RC'-load : the basic circuit and its step-response.
Because of this capacitances, the collector voltage v, does not jump suddenly to the

value I. R, where I. is the collector current. Instead, the collector voltage rises
exponentially according to the formula (see Part 1, Eq. 1.6.66) :

vo=1I.R (1 - e*t/RC) 2.1.1)

The time, elapsed between 10 % and 90 % of the final collector voltage value (I R),
we name the rise-time, 1,1 and we calculate it by inserting these levels into the Eq. 2.1.1:

0.1ICR:ICR(1—e—t1/RC) —~ 4, =RCIn09 (2.12)
Similarly for ¢; :

0.9ICR:ICR(1—e—f2/RC) —~ &= RCIn0.1 (2.1.3)
The rise-time is the difference between these two instants :

0.9
T =t2—t1 =RCIn0.9—-RCIn0.1 = RCan—l =22RC (2.1.4)

This value is the reference against which we will compare all other circuits in the following
sections of the book.
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Since in wideband amplifiers we strive to make the output voltage a replica of the
input voltage (except for the amplitude!), we want to reduce the rise-time of the amplifier
as much as is practically possible. As the output voltage rises, more current flows through
R and less current remains to fill C'. Obviously, we would achieve a shorter rise-time if we
could disconnect R in some way until C' is filled-up. To do so, let us introduce a switch S
between the capacitor C' and the load resistor R. This switch is open at time ¢ = 0, when
the current step starts, but it closes at time t = RC', as in Fig.2.1.2. In this way we force
all the available current to the capacitor, so it charges linearly to the voltage I, R. But
when the capacitor is fully charged, the switch S is closed, routing all the current to the
loading resistor R .
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Fig.2.1.2 : A hypothetical ideal rise-time circuit. The switch disconnects R from the circuit,

so all of I, is available to fill C, but after a time t = RC' the switch is closed and all I flows
through R. The output voltage is shown in ), in comparison to the exponential response ina).

By comparing Fig.2.1.1 with Fig.2.1.2 , we note a substantial decrease in rise-time
Tr2, Which we calculate from the output voltage :

=I.R ; T=RC (2.1.5)

t=
t=0

1 [ I,
o= — [ Ldt=—-t
Y Cl/ C
0

Since the charging of the capacitor is linear, as displayed in Fig. 2.1.2, the rise-time
is simply :

To =09RC - 0.1 RC =0.8RC (2.1.6)

In comparison with Fig.2.1.1, where there was no switch, the rise-time
improvement factor is :

Trl 2.20 RC
= T _9 217
"= T T08RC [E (2.1.7)

It is evident that the rise-time (Eq.2.1.6 ) is independent of the actual value of the
current /., but the maximum voltage [, R (Eq.2.1.5) is not. On the other hand, the
smaller the resistor R, the smaller is the rise-time. Clearly, the introduction of the switch S
would mean a great improvement. By using a more powerful transistor and a lower value
resistor R, we could (in principle, at least) decrease the rise-time at will (providing that C
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remains unchanged). Unfortunately, it is impossible to make a low-on-resistance switch,
functioning as in Fig. 2.1.2, which would suitably follow the signal and automatically open
and close in nanoseconds or even in microseconds. So it remains only a nice idea.

But, instead of a switch, we can insert an appropriate inductance L between the
capacitor C' and resistor R and so partially achieve the effect of the switch, as shown in
Fig.2.1.3. Since the current through an inductor can not change instantaneously, more
current will be charging C', at least initially. The collector network in Fig.2.1.3 is
reciprocal, so we may take the output voltage either from the resistor R or from the
capacitor C'. In the first case we have a series-peaking network while in the second case we
speak of a shunt-peaking network. Both types of peaking networks are used in wideband
amplifiers.
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1 0.5 / bl
@TJ— =C RS I S S
2L 27 IC
1/ 0=r+ axrctan'—f;)1
1 0.1 Ty 1
- 0.0
0 ; 1 2 3 4 5
! b t/RC

Fig.2.1.3 : A common-base amplifier with the series-peaking circuit. The output voltage v,
(c) is compared to the exponential response (¢, L = 0) and the ideal response (b). If we took
the output voltage from the capacitor C', we would have a shunt-peaking circuit (seeSec.2.7).

Fig.2.1.3 is the most simple series-peaking circuit. Later, when we will discuss
T-coil circuits, we will not just achieve rise-time improvements similar to the value given
in Eq. 2.1.7 but, in cases where it is possible (usually it is) to split C' in two parts, we will
obtain a substantially greater improvement.
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2.2 Two pole series-peaking circuit

Besides the series-peaking circuit, in this section we will discuss all the significant
mathematical methods, which are needed to calculate the frequency-, phase- and
time-delay-response, the upper half-power frequency and the rise-time. In addition, we will
derive the most important design parameters of the series-peaking circuit, which we will
use also in the other sections of the book.

icl L Vo

Fig.2.2.1 : A two-pole series-peaking circuit

In Fig.2.2.1 we have repeated the collector-loading circuit of Fig.2.1.3. Since the
inductive peaking circuits are used mostly as collector load circuits, from here on we will
omit the transistor symbol ; instead, we will show the input current ; (formerly ;) flowing
into the network, with the common ground as its drain. At first we will discuss the
behavior of the network in the frequency-domain, supposing that [; is the RMS value of the
sinusoidally-changing input current. This current is split into two parts : the current through
the capacitance /- and the current through the inductance I, . Thus we have :

V; 1
L=Is+1;=VijwC f—é——:w('c f———ﬁ 221
¢+ e +ju)L—i—R e +3wL+R ( )
The output voltage is :
R
Vo= R=V, ——— 222
© L jwL+ R ( )
From this we obtain the transfer function :
R
Vi—————
Vo jwL+ R B R

I g - jwC(jwL+R)+1
Yi (ij’—i- ij+R)

- al (2.2.3)

—wLCOC+RjwC+1

Letus set [; =1V /R and L = m R?C, where m is a dimensionless parameter ; also,
let's substitute jw with s. We obtain :

1
s$2mR*C?+sRC +1

Vo= F(s) =
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1 1
T mRIC? >, s R 1 (2.2:4)
s
mRC m R? C?
The denominator roots, which for an efficient peaking must be complex-conjugate,

like in Fig.2.2.2, are the poles of F'(s) :

. 1 1 1
Sj2 =01 jw = — S RO i\/4m2RZC’2 oy (2.2.5)

m=20.5

m> 0%/ . j.(D
VAN

Fig.2.2.2 : The poles s; and sy in the complex plane. By changing the parameter m , the
poles travel first on the real axis, from s; = —1/RC and s = —oo (m=0), to
s1 =82 = —2/RC (m =0.25) and then (m > 0.25), as a complex-conjugate pair, on
the circle, the radius of which is 7 = 1/RC and its center at o = — r . The figure on the
right shows the four characteristic layouts, which are explained in detail in the text.

With these poles we may write Eq. 2.2.4 also in the following form :
1 1

F(s) — . 2.2.6
(s) mRC  (s—s1)(s— s2) ( )
AtDC (s =0), Eq.2.2.6 shrinks to :
1 1
F(0) = . 227
©) mRC 5189 ( )

By dividing Eq.2.2.6 by Eq.2.2.7, we get the amplitude-normalized transfer function :

81 82

(s —51) (s — s2)

F(s) = (2.2.8)

We will need this expression for the calculation of step response. By replacing both
poles by their components from Eg.2.2.5, restricting s to the imaginary axis jw and
grouping the imaginary parts, we will get :

0% + w%
[—oi+jw—w)][— o1+ j(w+w)]

F(jw) = (2.2.9)

We are often interested in the magnitude, |F'(w)|, which we obtain by multiplying F'(jw)
by its own complex-conjugate and then taking the root :

0.2+w2
Fw)| = F(jw) - F*(jw) = L 2.
|F(w)] = VF(jw) - F*(jw) NIC PR E e (2.2.10)
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The next step is the calculation of the parameter m. Its value depends on the type of
poles we want to have, which in turn depend on the intended application of the amplifier.
As a general rule, for sine-wave signal amplification we prefer the Butterworth poles while
for pulse amplification we prefer the Bessel poles. If high bandwidth is not of primary
importance, we can use a "critically-damped" system for a no-overshoot step. Other types
of poles are optimized for use in filters, where our primary goal is to selectively amplify
only a part of the spectrum. Poles are discussed in Part 4 (derived from some chosen
optimization criteria) and Part 6 (computer algorithms).

2.2.1. Butterworth Poles for Maximally-Flat Amplitude Response (MFA)

We will calculate the actual values of the poles, as well as the parameter m , by
using Eq.2.2.5, where we factor out 1/2mRC . If the square-root of Eq.2.2.11 is
imaginary, which is true for m > 0.25, we can also factor-out the imaginary unit :

1 1
s19 = (—1:|: 1—4m):7<—1:|:j\/4m—1> 2.2.11)

2mRC 2mRC

We now compare this relation with normalized 2"4-order Butterworth pole values
(the reader can find them in Part 4, Table 4.3.1, or by running the BUTTAP computer
routine given in Part 6). The values obtained are o1y = — 0.7071 and wy; = £ 0.7071.

Note : From now on, we will append the index "t" to the poles taken from
the tables or calculated by a suitable computer program ; these values are
normalized to a frequency of 1 radian per second.

Since both the real and imaginary axis of the Laplace plane have the
dimension of frequency, the pole dimension is radians per second [rad /s];
unfortunately, it has become almost a custom not to write the dimensions.

The sign is also seldom written ; instead, most authors leave to the
reader to keep in mind that the poles of unconditionally stable systems
always have the real part negative and the imaginary part is either zero or
both positive and negative, forming a complex-conjugate pair.

To make it easier for the reader, we will always have the symbols o
and w signed as required by the mathematical operation to be performed,
while the numerical values within the symbols will always be negative for o
and positive for w. For example, we will write a complex-conjugated pole-
pair (s1, s2) = (s1, 87) as :

s1=01+jw; = —0.7071 + 50.7071
S9 =09+ jwe = — 0.7071 — 50.7071
= S9 =01 — jw) = §]

and a real pole will be given like :

S3 — 03 = — 1.000

Each o; and w; will bear the index of the pole s; (and not their table
order number). We will use the odd index for complex-conjugate pair
components (with the apropriate + / — sign for the imaginary part).

-2.15-



P. Stari¢, E. Margan Inductive Peaking Circuits

In order to have the same response, the poles of Eq. 2.2.11 must be proportional to
those from the tables, so the imaginary-to-real part ratio must be the same :

3‘{8“} . W1t N 3‘{81} . w1 N \/4m—1 . 0.7071 .
§R{sh} N 01t §R{51} N g1 -1 N —0.7071 N

—1 (22.12)

and the same is true for so (except the sign). From Eq.2.2.12 follows that the value of m
which satisfies our requirement for the Butterworth pole layout must be :

m = 0.5 (2.2.13)
Thus, the inductance is :
L=mR*C =0.5R*C (2.2.14)
Finally, by inserting the value of m back into Eq. 2.2.11, the poles of our system are :
. 1 .
sl,gzaligwlzﬁ(—lij) (2.2.15)

The value 1/RC = wy, is equal to the upper half-power frequency of the non-peaking
amplifier of Fig. 2.1.1 (at this frequency, since power is proportional to voltage squared, the
voltage gain drops to 1/1/2 = 0.7071). If we put 1/RC =1 (or R=1Q and C = 1F,
or R =500k and C' = 2 uF, or any other similar combination, provided that it can be
driven by the signal source), we get the normalized (denoted by index 'n') pole values :

Sin2n = Oln + jwln = -1 :l:,] (2216)

If we use normalized poles, we must also normalize the frequency : jw/wy instead of jw.

Note : It is important not to confuse our system with normalized poles (Eq.2.2.16)
with the system having normalized Butterworth poles taken from the table
(s1t,s2t = —0.707 £ 7 0.707). Although both are Butterworth-type and both are
normalized, they differ in bandwidth :

susw =1 while /Sty sm =2 (2.2.17)

This will become evident soon in Sec.2.2.4, where we will calculate and plot the
magnitude (absolute value) of the frequency-response.

2.2.2. Bessel Poles for Maximally-Flat Envelope-Delay (MFED) Response

In Part 4, Table 4.4.1 (or Part 6, by using the BESTAP routine), the poles for the
2" order system are oy = — 1.7544 and wy; = =+ 1.5000. Then, as for the Butterworth
case above, the imaginary-to-real component ratio is :

S{s1}  Vam-—1 Wit 1.5000

— = = 2.2.18

R{s1} —1 o — 1.7544 (2.2.18)

Solving for m gives : m=1/3 (2.2.19)

The inductance is : L =0.33 R?C (2.2.20)
1

and the poles are : S12= por (—1.5+50.866) (2.2.21)
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2.2.3. Critical Damping (CD)

In this case, both poles are real and equal, so the imaginary part in Eq.2.2.11 (the
square root) must be zero :

4m—-1=0 = m = 0.25 (2.2.22)

with the inductance : L =0.25 R?C (2.2.23)
. 2

resulting in a double real pole : S12 = — Tl (2.2.24)

In general, the parameter m may be calculated with the aid of Fig. 2.2.2, where both
poles and the angle 6 are shown. If the poles are expressed by Eq. 2.2.11 :

8‘{81} . w1 . \/4m—1

tanf = = = 2.2.25
an %{81} o1 —1 ( )
and from this :
1 2
m = %ﬂe (2.2.26)

which is also equal to 1/4 cos?6, as can be seen in some literature. We prefer Eq. 2.2.26.

Now we have all the data needed for further calculations of the frequency-, phase-,
time-delay-, and step-response.

2.2.4. Frequency-Response Magnitude

We have already written the magnitude in Eq.2.2.10. Here we will use the
normalized frequency w/wy, :

2 2
O1n + wln

ot + @+ [+ (/in — )]

|F(w)| = (2.2.27)

This is a normalized equation: in magnitude, as ‘F (w)‘ =1 for w=0 and in
frequency to the upper half-power frequency of the non-peaking system, wy, .

Inserting the pole-types of MFA, MFED and CD and the frequency in the range
0.1 < (w/wp) < 10, we obtain the diagrams in Fig.2.2.3 .

2.2.5. Upper Half-Power Frequency

An important amplifier parameter is its upper half-power frequency, which we will
name wy for the peaking amplifier (in contrast to the wy, of the non-peaking case). This is

the frequency at which the output voltage V, drops to Vouc/ \/5 , where V. is the output
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voltage at d.c. (w=0), or, if normalized, to 1V/ /2 . Since the power is proportional to
the voltage-squared, the normalized output power P, = (1V)?/2, which is one half of the
output power at DC. We can calculate the upper half-power frequency from Eq.2.2.27, by

inserting w = wy ; the result must be 1/ \/5 :

| F(wn)| = _ (2.2.28)

\/[0% + (wn + W1)2] [0% + (wh — wl)Q] V2

We will use the term upper half-power frequency intentionally, rather than the term
upper -3dB frequency, which is commonly found in literature. While it has become a
custom to express the amplifier gain in dB, the dB scale (the log of the output-to-input
power ratio) implies that the driving circuit, which supplies the current [; to the input, has
the same internal resistance as the loading resistor 2. This is not the case in most of the
circuits which we will discuss.

2.0
Vo
iiR
1'0 — T
~ T
~
0.7
05} L=0 \
| a) m=0.50 \
b) m =0.33
c) m=0.25
02 +
' wp=1/RC
a\ b\ \¢
0.1 | L L | | |
0.1 0.2 0.5 1.0 2.0 5.0 10.0
/oy
Fig.2.2.3 : Frequency-response magnitude of the two-pole series-peaking circuit for some

characteristic values of m: @) m = 0.5 is the maximally-flat amplitude (MFA) response; b)
m = 0.33 is the maximally-flat envelope-delay (MFED) response; ¢) m = 0.25 is the critical
damping (CD) case ; the non-peaking case (m = 0 = L = 0) is the reference. Note the bandwidth
improvement of all peaking responses, compared to the non-peaking bandwidthwy, atv, = 0.7071.

For a series-peaking circuit the calculation of wy is relatively easy. The calculation
becomes progressively more difficult for more sophisticated networks, where more poles
and sometimes even zeros are introduced. In such cases it is better to use a computer and in
Part 6 we have presented the development of routines which the reader can use to calculate
the various response functions.

If we solve Eq.2.2.28 for wy /wy , we get [Ref. 2.2, 2.4] :

= (2.2.29)

Wh
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The value 7, is the cut-off frequency improvement factor, defined as the ratio of the
system upper half-power frequency against that of the non-peaking amplifier (and, since
the lower half-power frequency of a wideband amplifier is generally very low, usually
down to d.c., we may call ny, also the bandwidth improvement factor). In Table 2.2.1 at the
end of this section the bandwidth improvement factors and other data for different values
of the parameter m are given.

2.2.6. Phase-Response

We can calculate the phase-angle ¢ of the output voltage V, referred to the input
current /; by finding the phase-shift of each pole sy = o + jwy and then sum them :

or(w) = arctan 2 (2.2.30)
oy

In Eqg.2.2.30 we have the ratio of the imaginary part to the real part of the pole, so
the pole value may be either exact or normalized. For normalized values we must also
normalize the frequency variable as w/wy. Our frequency-response function (Eq. 2.2.8) has
two coplex-conjugated poles. Therefore, the phase-response is :

O1n O1n

(2.2.31)

In Fig. 2.2.4 the phase plots, corresponding to the same values of m as in Fig.2.2.3 |
are shown :

0
\
20 [~
- IS
\§\
-40 §
[} ™ —
o [°] L=0
-60
\\
-80 | ]
c
-100
a) m=0.50 >
-120 | b) m=0.33
c) m=0.25 0
-140 | +
op=1/RC \\\\\
-160 ~__
-180 | (IR
0.1 0.2 0.5 1.0 2.0 5.0 10.0
o/op

Fig.2.2.4 : Phase response of the series peaking circuit for ) MFA, b)) MFED and ¢) CD case,
compared with the non-peaking response (L = 0). The phase angle scale was converted from
radians to degrees by multiplying by 180/r . The non-peaking (single-pole) response, has the
asymptote at 90° for w— oo, while the second-order peaking systems have the asymptote at 180°.

-2.19-



P. Stari¢, E. Margan Inductive Peaking Circuits

2.2.7. Phase- and Envelope-Delay

For each pole, the phase-delay (or the phase-advance for any zero) is :
Tp= —— (2.2.32)

If w is the positive angular frequency by which the input signal phasor rotates, then
the angle ¢, by which the output signal phasor lags the input, is defined in the direction
opposite to w, meaning that, for a phase-delay, ¢ will be negative, as in Fig.2.2.4;
consequently, 7, will also be negative. Note that 7, has the dimension of time.

Now, 7, is obviously frequency-dependent, so, in order to evaluate the time-domain
performance of a wideband amplifier on a fair basis, we are much more interested in the
"specific" phase-delay, known as the envelope-delay (also group-delay) and it is a
frequency-derivative of the phase-angle as function of frequency :

2 (2.2.33)
dw

Here, too, a negative result means a delay and a positive result an advance against
the input signal.

In Fig.2.2.5 a tentative explanation of the difference between the phase-delay and
the envelope-delay is displayed both in time-domain and as a phasor diagram.

vi=Vgsino(t-ty) , t>1,
Input envelope

Output envelope
/ AV (o) !

/\ 0 (0) ‘

N Vo= AVgsin(wt- @) , t>t,+1/o
to Y
> [ 5
9 A
50% AT 0 AV,

\/
— :ﬂ - ot R
Te do T(,D_% /t=t0+N/(1J

Fig.2.2.5 : Phase- and envelope-delay definition. The switch S is closed at time %y , to apply a
sinusoidal voltage with amplitude V; to the input of the amplifier having a frequency-dependent
amplitude-response A(w) and associated phase-response ¢(w) . The input signal envelope is a unit
step. The output envelope lags the input by 7. = d¢/dw , measured from ¢ to ¢; , where ¢; is the
time at which the output envelope reaches 50% of its final value. A number of periods later (N/w),
the phase-delay can be measured as the time between the input and output zero crossing, indicated
by t2 and ¢3 and is expressed as 7, = ¢/w . The corresponding phasor diagram is shown along.

In the phase-advance case, when zeros dominate over poles, the name suggests that
the output voltage will change before input, which is impossible, of course. To see what
actually happens, we apply a sinewave to two simple RC networks, low-pass and high-pass
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(with a zero at s = 0), as shown in Fig. 2.2.6. Compare the phase-advance case, Vipp , with
the phase-delay case, V, . The input signal frequency equals the network cut-off, 1/RC'.

—_— —| |e—-7T
v ~ [ILP ¢
R Yorp
l VoHP /
IC /
14 t
= 0
Vi f YoHP
11
R
@Vg R VoLP /
= = L1Hp
+'L'(pﬂ -

Fig.2.2.6 : Phase delay and phase advance. It is evident that both output signals undergo a phase
modulation during the first half period. The time from ¢y and the first zero-crossing of the output
at t1 is shortened for V,;, and extended for V,;;, . However, both envelopes lag the input envelope.
On the other hand, the phase, measured after a number of periods, exhibits an advance of + 7,
for the high-pass network and a delay of — 7, for the low-pass network.

Returning to the envelope-delay for the series peaking circuit, in accordance with
Eq.2.2.33, we must differentiate Eq. 2.2.30. For each pole we have :

dy _ d { ‘”E‘*’i] _ i (2.2.34)
ag

dw dw 2 1 (wFw)?

and, as for the phase-delay, the total envelope-delay is the sum of the contribution of each
pole (and zero, if any). Again, if we use normalized poles and the normalized frequency,
we get the normalized envelope-delay, 7. wy , resulting in a unit-delay at d.c.

For the 2-pole case we have :

O1n O1n

Te Wh = +
) a-%n + (w/wh - wln)Q O-%n + (w/wh + wln)2

(2.2.35)

The plots for the same values of m as before, after Eq. 2.2.35 , are in Fig.2.2.7 .

For pulse amplification, the importance of achieving a flat envelope-delay cannot
be overstated. A flat delay means that all the important frequencies will reach the output
with unaltered phase, preserving the shape of the input signal as much as possible for the
given bandwidth, thus resulting in minimal overshoot of the step-response (see the next
section). Also, a flat delay means that, since it is a phase derivative, the phase must be a
linear function of frequency up to the cut-off. This is why Bessel systems are often being
refered to as "linear-phase" systems. This property can not be seen in the log-scale used
here, but, if plotted against a linearly scaled frequency, it would be. We leave to the curious
reader to try it by himself.
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In contrast, the Butterworth system shows a pronounced delay near the cut-off
frequency. Conceivable, this will expose the system resonance upon the step excitation.

0.0 —
_ 2 =
i L=mR°C ) B //%/
o2l —— 0 a) m=0.50
N b) m =0.33 L=0
- ¢) m =025 /
0.4 ]
Te®h N
-0.6— op=1/RC
c
-0.8 ,
/ //
e
\\
™~
\\ a
-1.2
0.1 0.2 0.5 1.0 2.0 5.0 10.0
o/op

Fig.2.2.7 : Envelope-delay of the series peaking circuit for the same characteristic values
of m as before : @) MFA, b) MFED, c¢) CD. Note the maximally-flat envelope-delay plot b
being flat up to nearly 0.5 wy, .

2.2.8. Step-Response

We have already derived the formula for the step-response in Part 1, Eq. 1.13.29 :

g(t) =1+ e’ sin (wit + 6) (2.2.36)

|sin 6|

where 6 is the pole angle in radians : § = arctan ( — wy /071) + 7 (read the following Note!).

Note: We are often forced to calculate some of the circuit parameters from the
trigonometric relations of the real and imaginary components of the pole. The Cartesian
coordinates of the pole s; in Laplace plain are o; on the real axis and w; on the
imaginary axis. In polar coordinates, the pole is expressed by its modulus (the distance
of the pole from the complex-plane origin) :

M =/(o1+ jwi)(o1 — jw) = /0] + w?

and its argument (angle) 6, defined so that : tanf = -
01

Now, a mathematically correct definition of the positive-valued angle is counter-
clockwise from the positive real axis; so, if o1 is negative, 6 will be greater than /2.
However, the tangent function is defined within the range of F 7/2 and then repeats

for values between m + k7w/2. Therefore, by taking the Arctangent, § = arctan “r ,
o1
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we loose the information in which half of the complex plane the pole actually lies and
consequently a sign can be wrong. This is bad, because the left (negative) side of the
real axis is associated with energy-dissipative, that is, resistive circuit action, while the
right (positive) side is associated with energy-generative action. This is why
unconditionally stable circuits have the poles always in the left-half of the complex

plane.

To keep our analytical expressions simple, we will keep tracking the pole layout
and correct the sign and value of the arctan () by adding 7 radians to the angle 6
wherever necessary. But, in order to avoid any confusion, our computer algorithm

should use a different form of equation (see Part 6).
Please, see Appendix 2.3 for more details.

To use the normalized values of poles in Eq.2.2.36 we must also enter the
normalized time, ¢ /7", where T is the system time-constant, 7' = RC'. Thus we obtain :

a) for Butterworth poles (MFA) :
ga(t) =14 /2 e /Tsin (t/T + 0.785 + )

b) for Bessel poles (MFED) :
gp(t) =142 12T 5in (0.866 t /T + 0.5236 + 7)

¢) for Critical damping (CD) :

(2.2.37)

(2.2.38)

Eq.2.2.36 was derived for simple poles, so it is not valid for a critical damping
(CD), because here we have a double pole at s;. To calculate the step-response for the
function with a double pole, we start with Eq. 2.2.8, insert the same (real!) value (s; = s2)

and multiply it with the unit-step operator 1/s . The resulting equation :

has the time-domain function :

2 st
s1¢€

t)=LHG(s))} = —
ol1) = £7HGW) = Yo res 0 g
There are two residues, resg and resy :

. 52 est
resp = lim s ——— | =1
5— s(s—s1)

For res; we must use Eg. 1.10.12 in Part 1 :

lim (s — s1)? si¢” et (syt — 1)
res) = —|(s—s1) —F/———| = st —
Ve s [T Sy !

and their sum is : g(t) =1+¢e" (o1t — 1)
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Eq.2.2.39 has a double real pole s; = 03 = — 2/RC or, normalized, o1, = — 2.
We insert this in the Eq.2.2.41 to get the CD step-response plot (curve ¢, m = 0.25):

ge(t) =1—e 2T (14 2t/T) (2.2.42)

The step-response plots of all three cases are shown in Fig. 2.2.8. Also shown is the
non-peaking response as the reference. The MFA overshoot is 6 = 4.3 %, while for MFED
it is 10 times smaller !

1.2
1.0 =
Yo
ii R /
0.8
0.6 l
- a) m =0.50
b) m =0.33
0.4 /// C) m =0.25
0.2 ow=1/RC T=1/wop
0.0 / | | |
0 1 2 3 4 5 6

Fig.2.2.8 : Step-response of the series peaking circuit for the four characteristic
values of m : a) MFA, b) MFED, ¢) CD. The MFA overshoot is 6 = 4.3 %, while for
MFED itis only 6 = 0.43%.

2.2.9. Rise-time

The most important parameter, by which the time-domain performance of a
wideband amplifier is evaluated, is the rise-time. As we have already seen in Fig. 2.1.1, this
is the difference of instants at which the step-response crosses the 90 % and 10 % levels of
the final value. For the non-peaking amplifier, we have labeled this time as 7. and we have
calculated it already by Eq.2.1.4, obtaining the value 2.20 RC . The peaking amplifier
rise-time 1s labeled 73 .

The calculation for 7 goes basically by Eq.2.1.4. For more complex circuits, the
step-response function can be rather complicated, consequently the analytical calculation
becomes difficult and in such cases it is better to use a computer (see Part 6).The rise-time
improvement against a non-peaking amplifier is :

Tr

= (2.2.43)

TR

The values for the bandwidth improvement 7, and for the rise-time improvement 7,
are similar but in general they are not equal. In practice, we more often use 7, , the
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calculation of which is easier. If the step-response overshoot is not too large, we can
approximate the rise-time from the formula :

1
RC 2rRC
where wy, is the upper half-power frequency in rad/s, while f, is the upper half-power
frequency in Hz. We have already calculated the non-peaking rise-time 7, by Eq.2.2.4 and

found it to be 2.20 RC' . From this we obtain 7 fi, = 2.20/27 = 0.35, and this relation we
meet very frequently in practice :

wh = 27f = and further  f, =

0.35
o

TI‘ —

(2.2.44)

By replacing f;, with fy in this equation, we get (an estimate of) the rise-time of the
peaking amplifier. But note that by doing so, we miss the fact that Eq. 2.2.44 is exact only
for the single-pole amplifier, where the load is the parallel RC' connection. For all other
cases, it can be used as an approximation if the overshoot does not exceed some 2 %.
The overshoot of a Butterworth two-pole network amounts to 4.3 % and is getting larger
with increasing the number of poles, thus calculating the rise-time by Eq.2.2.43 will be in
error. Even greater error will result for networks with Chebyshev and Cauer (elliptic)
system poles. In such cases we must compute the actual system step-response and find the
rise-time from it. For Bessel poles, the error is tolerable ; never-the-less, using a computer
to calculate the rise-time from the step-response will give greater precision.

2.2.10. Input Impedance

We will use the series-peaking network also as an addition to T-coil peaking. This
is possible, since the T-coil network has a constant input impedance (the T-coil is
discussed in Sec. 2.4, 2.5 and 2.6). Therefore, it is useful to know the input impedance of
the series-peaking network. From Fig.2.2.1 it is evident that the input impedance is a
capacitor C' in parallel with the serially connected L and R :

1 B JwL + R
1 —Ww’LC + jwRC
JjwL + R

Z =

(2.2.45)
JwC' +

It would be inconvenient to continue with this expression. To simplify, we substitute :
L = mR*C and w, = 1/RC, obtaining :

R
Z =R T mjwjen (2.2.46)
1—m(w/wn)” + jw/wn

By making the denominator real and with some further rearrangement we get :

L+ jw/wn[(m — 1) — m*(w/wn)’]

A= R T 2m)(wfan)? & m2(wfn)? (2:247)
and the phase-angle is :
¢ = arctan ?N{Lgﬁ = arctan {w/wy [(m — 1) — m*(w/wn)?] } (2.2.48)
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The normalized impedance modulus is :

2 \/m E }2+ NE } L e )lm = 1) — /)P

R 14+ (1=2m)(w/wn)?+ m?(w/wy)*
(2.2.49)

In Fig.2.2.9 the plots of Eg.2.2.49 and Eg.2.2.48 for the same values of m as
before are shown :
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Fig.2.2.9 : Input impedance modulus (normalized) and the associated phase angle of the
series-peaking circuit, for the characteristic values of m . Note that for high frequencies
the input impedance approaches that of the capacitance. a) MFA, b) MFED, c¢) CD.

We will use the equations derived in this section also in the following section,
where we will omit the derivations. Table 2.2.1 shows all important design parameters of

the two-pole series-peaking circuit :
Table 2.2.1

response | m | my | e |6 [%]
MFA [0.50|1.41|1.49|4.30

MFED |0.33|1.36|1.39]0.43
CD 0.25(1.29|1.33]0.00

Table 2.2.1 : 2"-order series-peaking circuit parameters summarized : m is the inductance-proportionality
factor, n is the bandwidth improvement, 7, is the rise-time improvement and $ is the step-response overshoot.
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Fig.2.10.1 : MFA frequency-responses of all the circuit configurations discussed. By far,
the 4-pole T-coil response #) has the largest bandwidth.
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Fig.2.10.2 : MFED step-responses of all the circuit configurations discussed. Again, the 4-pole
T-coil step response #) has the steepest slope, but the 3-pole T-coil response /) is close.
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