Part 5 : System synthesis and integration P.Stari¢, E-Margan

5.1 Geometrical Synthesis of Inductively-Compensated
Multi-Stage Amplifiers - A Simple Example

The reader who has patiently followed the discussion presented in previous
chapters is probably eager to see all that theory being put into practice.

Before jumping to some more complex amplifier circuits, we will give a
relatively simple example of a two-stage differential cascode amplifier, by which we
will illustrate the actual system optimization procedure in some detail, using the
previously developed principles in their full potential.

Since we want to grasp the "big picture", we will have to leave out some less
important topics, such as the negative input impedance compensation, the cascode
damping, etc. These are important for the optimization of each particular stage, which,
once optimized, can be idealized to some extent. We have covered that extensively
enough in Part3, so we will not explicitly draw the associated components in the
schematic diagram. But, at the end of our calculations, we will briefly discuss the
influence of those components to final circuit values.

A two-stage amplifier is a "minimum complexity" system for which the
multistage design principles still apply. To this, we will add a 3-pole T-coil and a
4-pole L+T-coil peaking networks, discussed in Part 2, as loads to each stage, making
a total of 7 poles. There is, however, an additional real pole, due to the @); input
capacitance and the total input and signal source resistance. As we will see later, this
pole can be neglected if its distance from the complex-plane origin is at least twice as
large as that of the system real pole setby — 1/R,C, .

Such an amplifier thus represents an elementary example, in which everything
that we have learned so far can be applied. The reader should, however, be aware that
this is by no means the ideal or, worse still, the only possibility. At the end of our
calculations, when we will be able to assess the advantages and limitations offered by
our initial choices at each stage, we will examine a few possibilities for further
improvement.

We will start our calculations from the unavoidable stray capacitances and the
desired total voltage gain. Then, we will apply an optimization process, which we like
to refer to as the geometrical synthesis, by which we will calculate all the remaining
circuit components in such a way, that the resulting system will conform to the 7-pole
normalized Bessel-Thomson system. The only difference will be that the actual
amplifier poles will be larger by a certain factor, proportional (but not equal) to the
upper half-power frequency, wy . We have already met the geometrical synthesis in its
basic form in Part 2, Fig. 2.5.3 when we were discussing the 3-pole T-coil circuit. The
name springs from the fact that, for a given pole pattern and a few independent
component values, the remaining components can be calculated from simple
geometrical relations, involving the pole real an imaginary components. Here we are
going to see a generalization of those basic relations, applied to the whole amplifier.

We must admit that the constant and real input impedance of the T-coil
network is the main factor which allows us to assign so many poles to only two stages.
Actually, we could use a cascade of passive two-pole sections, but they would load
each other and, as a result, the bandwidth extension factor would suffer. Another
possibility would be to use an additional cascode stage to separate the last two
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peaking sections, but another active stage, while adding gain, adds also its own
problems to take care of. It is, nevertheless, a perfectly valid option.

Let's take now a quick tour of the amplifier schematic, Fig. 5.1.1. We have two
differential cascode stages and two current sources, which set both the transistor
transconductance and the maximum current available to load resistors, R, and R}.
This limits the voltage range available to the CRT. Since the circuit is differential, the
total gain is a double of each half. The total d.c. gain is (approximately) :

R, Ry
Rel ReQ

The values of R.; and R., set the required capacitive bypass, C¢;/2 and
Ce3/2, to match the transistor time-constants. In turn, this sets the input capacitance at
the base of ()1 and ()3, to which we must add the inevitable C, and some strays.

The capacitance Cy should thus consists of, preferably, only the input
capacitance at the base of ()3 . If required by the coil tuning, it can easily be increased
by adding a small capacitance in parallel. Note that the associated T-coil, L4, will
have to be designed as an interstage peaking, as discussed in Part3, Sec. 3.6, but we
can leave the necessary corrections to be done at the end.

The capacitance C},, due almost entirely to the CRT vertical plates, is much
larger than Cy, so we expect that R, and R}, can not be equal. From this it follows
that it might be difficult to apply equal gain to each stage, in accordance with the
principle explained in Part4, Eq.4.1.39. Nevertheless, the difference in gain will not
be too high, as we shall see.

Age = 2 (5.1.1)

Vo Vea

VCZ Vc4

Fig.5.1.1 : A simple 2-stage differential cascode amplifier with a 7-pole peaking system: the
3-pole T-coil interstage peaking (between the ()9 collector and the ()3 base) and the 4-pole
L+T-coil output peaking (between the ()4 collector and the vertical plates of the cathode-ray
tube). The schematic was simplified to emphasize the important design aspects - see text.
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Like any other engineering process, the geometrical synthesis also starts from
some external boundary conditions, which set the main design goal. In this case, it is
the CRT vertical sensitivity and the available input voltage, from which the total gain
is defined. The next condition is the choice of transistors, by which the available
current is defined. Both the CRT and the transistors set the lower limit of the loading
capacitances at various nodes. From these, the first circuit component Ry, is fixed.

With R, fixed, we arrive at the first "free" parameter, which can be
represented by several circuit components. However, since we would like to maximize
the bandwidth, this parameter should be attributed to one of the capacitances. By
comparing the design equations for the 3-pole T-coil and the 4-pole L+T-coil peaking
networks in Part2, it can be deduced that C,, the input capacitance of the 3-pole
section, is the most critical component.

With these boundaries set, let's say that we have the following component
values to start the design :

C, = 11pF  (9pF of the CRT vertical plates, 2 pF stray)

C, = 4pF (3 pF from the Q3 C¢, , 1 pF stray)

Ry, =360 Q2 (5.1.2)
The pole pattern is, in the general case, also a "free" parameter, but we would

like to have a nice smooth transient, so we have no other choice but to adopt the

Bessel-Thomson pattern. As can be seen in Fig. 5.1.2, each pole (-pair) defines a circle
going through the pole and the origin and with the center on the negative real axis.

s1d
1 for a single real pole
2 for series peaking g,
4 for T-coil peaking

K
K
K

S1
K K

jo

K
RyG,
/ R4Cy 6D R,C,
0 / Sa
K

R.C, S2b

$2¢

S2d

5 4 3 2 1 0
O

Fig.5.1.2 : The 7 Bessel-Thomson poles. The characteristic circle of each
pole (-pair) has a diameter defined by the appropriate RC'-constant and the
peaking factor K, which depends on the type of network chosen.
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The poles in Fig. 5.1.2 bear the index of the associated circuit components and
the reader might wonder why we have chosen precisely that assignment.

In a general case, the assignment of a pole (-pair) to a particular circuit section
is yet another "free" design parameter. If we were designing a low-frequency filter, we
could indeed have chosen an arbitrary assignment (as long as each complex-conjugate
pole-pair is assigned as a pair, a limitation due to physics, instead of circuit theory).

If, however, the bandwidth is an issue, then we must seek those nodes with the
largest capacitances and apply the poles with the lowest imaginary part to those circuit
sections. This is because the capacitor impedance (which is dominantly imaginary) is
inversely proportional both to the capacitor value and the signal frequency.

In this light, the largest capacitance is at the CRT, that is C}; thus the
pole-pair with the lowest imaginary part is assigned to the output T-coil section,
formed by Ly and Ry, therefore acquiring the index "b", s, and sy,

The real pole is the one associated with the 3-pole stage and there it is set by
the loading resistor R, and the input capacitance C,, becoming s,.

The remaining two pole pairs should be assigned so that the pair with the
larger imaginary part is applied to that peaking network which has a larger bandwidth
improvement factor. Here we must consider that, for a T-coil, K =4 and for the
series-peaking L-section (of the 4-pole L+T-scetion) K = 2. Clearly, the pole-pair
with the larger imaginary part should be assigned to the interstage T-coil, L4, thus
they are labeled s14 and so4 . The L-section then gets the remaining pair, s;cand so.

We have thus arrived at a solution which seems logical, but in order to be sure
that we have made the right choice, we should check other combinations, as well. We
are going to do it at the end of the design process.

The poles for the normalized 7"-order Bessel-Thomson system, as taken either
from Part4, Table4.4.3, or by using the BESTAP (Part6) routine, along with the
associated angles, are :

Sa = 0 = —4.9718 0, = 180°

sb=o0ptjw, = —4.7583+571.7393 0, = 180° F 20.0787°

S¢ = 0t jwe = —4.0701 £ j3.5172 0. = 180° F 40.8316°

s¢ =04t jwg = — 2.6857 % j5.4207 fs = 180° F 63.6439°  (5.1.3)

So, let us now express the basic design equations from the assigned poles and
the components of the two peaking networks.
For the real pole s, we have the following familiar proportionality :

1

Sa=0,=D; = —49718 x -— R.C. (5.1.4)
At the output T-coil section, we have, according to Part 2, Fig.2.5.3:
Ob —4.7583
Dy = = = —5.3941 - 5.1.5
® 7 cos? by 0.8821 N (5.15)

For the L-section of the output L+T network, due to the fact that the T-coil
input impedance is equal to the loading resistor, we have :

O —4.0701
= = = —7.1094 —
cos? 0, 0.5725 > Ry, C,

(5.1.6)
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And finally, for the interstage T-coil network :

— 9.6857 4
94 _ — 136333 o —

Dy = _ _
47 os? 6y 0.1917 R, Cy

(5.1.7)

From these equations we can calculate the required values of the remaining
capacitances, C. and Cy . If we divide Eq. 5.1.5 by Eq. 5.1.6, we have the ratio :

4
Db B Rb Cb 2 Cc
= = 5.1.8
Rb C’c
It follows that the capacitance C; should be :
Cy Dy 11 —5.3941
= ) — . =4.1 F 5.1.9
=" D, T2 —7im 730p (-19)
Likewise, if we divide Eq. 5.1.4 by Eq.5.1.7, we get:
1
D, R, C Cy
= aa — 5.1.10
D~ 14 ic, (5-1.10)
R, Cqy
Thus Cy will be :
D, —4.9718
Cq=4C, =4.-4. ——————— = 5.8349pF 5.1.11
d Dy —13.6333 P .11

Of course, for most practical purposes, the capacitances don't need to be
calculated to such precision, a resolution of 0.1 pF should be more than enough. But
we would like to check our procedure by recalculating the actual poles from circuit
components and for that purpose we will need this precision.

Now we need to know the value of R, . This can be readily calculated from the
ratio D, /Dy :

1
Da B Ra Ca Rb Cb
= = 5.1.12
Dy 4 1R.C. -112)
Ry Cb
resulting in:
Ry, C, Dy 360 11 —5.3941
R, = . . = . . = 268.512 5.1.13
‘ 4  C, D, 4 4 —4.9718 ( )

We are now ready to calculate the inductances Ly, L. and Ly. For the two
T-coils we can use the Eq.2.4.19:

Ly = R2Cy = 360% - 11- 10712 = 1.4256 uH (5.1.14)

and
Lqg = R2Cy = 268.5% - 5.8349 - 10712 = 0.4206 uH (5.1.15)
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For L, we use Eq.2.2.26 to get the proportionality factor :

1 +tan®6, _, 3607 - 4.1730 - 10712
Le=—1 " "7° = =0.1 H 5.1.16
¢ By G 4-0.8821 0-1533 u (5.1.16)

The magnetic coupling factors for the two T-coils are calculated by Eq.2.4.36:

3—tan20, 3 —0.1336
ke = — — 0.5584 51.17
® T 5 rtan20, 5+ 0.1336 ( )

and likewise :

3—tan’0; 3 —4.0738
ky = — — —0.1183 5.1.18
47 5 1 tan26, 5+ 4.738 ( )

Note that k4 is negative. This means that, instead of the usually negative
mutual inductance, we will need a positive inductance at the T-coil tap. This can be
achieved by simply mounting the two halves of Lg4 perpendicular to each other, in
order to have zero magnetic coupling and then introduce an additional coil, L, again
perpendicular to both halves of L4, with a value of the required positive mutual
inductance, as can be seen in Fig. 5.1.3. Another possibility would be to wind the two
halves of L4 in opposite direction, but then the bridge capacitance Cpg might be
difficult to realize correctly.

|7

kq=0

Sa S1d S2d

Fig.5.1.3 : The 3-pole stage has the magnetic coupling kq negative, which forces us to use
non-coupled coils and add a positive mutual inductance L. The T-coil reflects its resistive
load to the network input, greatly simplifying the calculations of component values.

The additional inductance L. is calculated from the required mutual
inductance given by the negative value of ky. In Part2 (Eg.2.4.1-2.4.5), we have
defined the T-coil inductance and its components by :

L=Li+Ly+2M

L
- 2(1+k)

M= —k+\/I L (5.1.19)
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thus, if £k = 0:
L 0.4206
Lig = Log = ; =~ =0.2103uH (5.1.20)
and
Ls L L 0.4206
Le= —kq Td : 2“‘ = — Ky Td =0.1183 =0.025H  (5.1.21)

If we would account for the ()3 base resistance, as we discussed in Part 3, we
would get k4 even more negative and the coil tap would not be centered any more.

The coupling factor ky, although positive, also poses a problem: since it is
greater than 0.5, it might be difficult to realize. As can be noted from the above
equations, the value of k depends only of the pole angle 6. In fact, the 2"%-order Bessel
system has the pole angles of =+ 150°, resulting in a k£ = 0.5, representing the
limiting case of realizability with conventionally wounded coils. Special shapes, coil
overlapping, or other exotic techniques may solve the coupling problem, but, more
often than not, they will also impair the bridge capacitance. The other limiting case,
when k = 0, is reached by the ratio S{s}/R{s} = /3 , a situation occurring when
the pole angle 8 = 120°.

In accordance with previous equations, we also calculate the value of the two
halves of Ly :

Ly 1.4256

Lip = Lop = - —0457T4pH  (5.1.22

BT T o M+ k) 2(1+0.5584) a (5.122)
Cbb T

I P
el

Ste S2c Stb $2b

Fig.5.1.4 : The 4-pole output L+T-coil stage and its pole assignment.

The last components to be calculated are the bridge capacitances, Cy, and Chg.
The relation between the T-coil loading capacitance and the bridge capacitance was
given already in Eq.2.4.31, thus we will have the following expressions :

1+ tan20 1+ 0.1336
Clp = Cp —— 200 gq 2F — 0.7793 pF (5.1.23)
16 16
and :
1 + tan2 0 1+ 4.0738
Oy = Oy — 2070 12“ d _ 58349 ~ T 2008 o = LSS03pF (5.1.24)
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This completes the calculation of amplifier components necessary for the
inductive-peaking compensation and thus achieving the Bessel-Thomson system
response. We would now like to verify the design by recalculating the actual pole
values. To do this we return to the relations which we have started from, Eq.5.1.3 to
Eq.5.1.7 and for the imaginary part using the relations in Part2. Fig.2.5.3 . In order
not to confuse the actual pole values with the normalized values, from which we
started, we add an index "A" to the actual poles :

1 1

O = T e T o5 410 —931.1-10°rad/s
ObA = — 4;28251) = 36(4)1: fi8,81201—12 = —891.0-106rad/s
AT T 2;228627096 - 360.211:1()%252-510—12 = — 762210 rad/s
wer = 2C0;zfccs‘cin L E 326.00-.3)16763‘09'(1323?2 = £058.5-10°rad/s
oan = = 4122%? N 268.5%5%;2;?10—12 = — 489510 rad/s
(5.1.25)
If we divide the real amplifier pole by the real normalized pole, we get :
ij N _Egi ;7'1;06 =187.3 - 10° (5.1.26)

and this factor is equal for all other pole components. Unfortunately, from this we
cannot calculate the upper half-power frequency of the amplifier. The only way to do
it (for a Bessel system) is to calculate the response for a range of frequencies and then
iterate it using the bisection method, until a satisfactory tolerance has been achieved.

Instead of doing it for only a small range of frequencies, we will rather do it
for a three decade range and compare the resulting response with the one we would
get from a non-compensated amplifier (in which all the inductances are zero). Since
we were not interested in the actual value of the voltage gain, we will make the
comparison using amplitude-normalized responses.

The non-compensated amplifier has two real poles, which are :

1 1

= _ d - _
SIN R, (Ca + Cd) an 2N Ry (Cb + CC)

(5.1.27)
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The non-compensated complex-frequency response would then be :

. SIN S2N
N(s) = (5 — 510) (5 — 59 (5.1.28)

with the magnitude :

4/ SIN $2N
F(w)] = 5.1.29
| N )‘ V(W? = siy) (W2 — shy) ( )
and the step-response :

) = e

s(s—siN)(s — san)

g N sint o SIN st (5.1.30)
SIN — SoN SIN — S2N
The risetime is :
1 1
=22 ——+—5— (5.1.31)
SIN SoN

and the half-power frequency:

fo = VIINEN (5.1.32)

27
The 7-pole amplifier has its complex-frequency response :

— SaA S1bA S2bA S1cA S2cA S1dA S2cA
(s — san) (s — S1pA) (S — S2ba ) (S — S1ca) (S — S2ca ) (8 — S1da) (S — S2da)

(5.1.33)

FA(S) = AO

and the step-response is the inverse Laplace transform of the product of Fi(s) and the
unit-step operator, 1/s:

g(t) =L { % FA(S)} =3 res(% Fa(s) eSt> (5.1.34)

We will not attempt to solve either of these functions analytically, since it
would take too much space and, anyway, we have solved them separately for its two
parts (3"- and 4"-order) in Part2. Because the systems are separated by an amplifier
(@3, Qg4), the frequency response would be a simple multiplication of the two
responses. For the step-response, we now have 8 residues to sum (7 of the system
poles, in addition to the one from the unit-step operator). Although lenghty, it is a
relatively simple operation and we leave it as an exercise to the reader. Instead, we are
going to use the computer routines, the development of which can be found in Part 6.

In Fig.5.1.5 we have made a polar plot of the poles for the inductively
compensated 7-pole system and the non-compensated 2-pole system. As we have
learned in Part 1 and Part 2, the farther from origin, the smaller is the pole influence
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on the system response. It is therefore obvious that the 2-pole system response will be
dominated by the pole closer to the origin and that is the pole of the output stage, son .
The bandwidth of the 7-pole system is, obviously, much larger.

180

270

Fig.5.1.5 : The polar plot of the 7-pole compensated system (poles
with index A) and the 2-pole non-compensated system (index N). The
radial scale is x 10° rad/s. The angle is in degrees.

10°

[FA(f)
[F(f)]
T | Fy (I
10"
10° 10’ 10° 10’
f [Hz]

Fig.5.1.6 : The gain-normalized magnitude vs. frequency of the 7-pole
compensated system |Fa(f)| and the 2-pole non-compensated system, |Fn(f)].
The bandwidth of Fy is about 25 MHz and the bandwidth of F) is about 88 MHz,

3.5 times larger.
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The pole layout gives just a convenient indication of the system performance,
but it is the magnitude vs. frequency response that exposes it clearly. As it can be seen
in Fig.5.1.6, the non-compensated system has a bandwidth of nearly 25 MHz. The
compensated amplifier bandwidth is close to 88 MHz, more than 3.5 times larger.

The comparison of step-responses in Fig.5.1.7 exposes the difference in
performance even more dramatically. The risetime of the non-compensated system is
about 13.3 ns and for the compensated system it's only 3.8 ns, also a factor of 3.5 times
better and with an overshoot of only 0.48 % .

1.2

1.0
8

0.8
8x(1) gyt

0.6
0.4

0.2

0 /
0 5 10 15 20 25
t [ns]

Fig.5.1.7 : The gain-normalized step-responses of the 7-pole compensated system
ga(t) and the 2-pole non-compensated system gn(t). The risetimes are 13.3 ns for
gn(t) and only 3.8 ns for ga(t). The overshoot of ga (¢) is only 0.48 % .

The above comparison of the inductively compensated and the non-
compensated amplifier shows an impressive improvement in performance. But, is it
the best that could be obtained from this circuit configuration ? After all, in Part2 we
have seen a similar improvement from just the 4-pole L+T-coil section and we expect
that the addition of the 3-pole section should yield a slightly better result at least.

One obvious way to extend the bandwidth would be to lower the value of Ry,
increase the bias currents and scale the remaining components accordingly. Then we
should increase the input signal amplitude to get the same output. But this is the
"trivial" solution (mathematically, at least ; not so when building an actual circuit).

By a careful inspection of the amplifier design equations and comparing them
with the analysis of the two sections in Part 2, we come to the conclusion that the most
serious bandwidth drawback factor is the high value of the CRT capacitance, which is
much higher than C, or Cy. But if so, did we limit the possible improvement by
assigning the poles with the lowest imaginary part to the output ? Shouldn't we get a
better performance if we add more peaking to the output stage ?
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Since we have put the design equations and the response analysis into a
computer routine, we can now investigate the effect of different pole assignments. To
do so, we simply reorder the poles and run the routine again. Besides the pole order
that we have described, let's indicate it by the pole order: abcd (Eq. 5.1.3), we have 5
additional permutations : abdc, acbd, adbc, acdb, adcb. The last two permutations
result in a rather slow system, requiring a large inductance for L; and large
capacitances C; and Cy4 . But the remaining ones deserve a look.

In Fig. 5.1.8 we have plotted the four normalized step responses and, in order
to distinguish them more clearly, we have displaced them vertically by a small offset.
This was necessary, since we have two identical pairs of responses and they would be
plotted one on top of the other.

1.2

0.8

0.6

0.4

0.2

0 2 4 6 8 10 12 14 16 18 20
t [ns]

Fig.5.1.8 : The normalized step responses of all four possible combinations of
pole assignments. There are two pairs of responses, here spaced vertically by a
small offset to allow easier identifications. The analysis that we have done in
detail is one of the faster responses, "abcd" (black).

If the pole-pairs s. and s4 are mutually exchanged, the result is the same as our
original analysis. But, by exchanging s, with either s. or sq, the result is suboptimal.

A closer look at Table 5.1 reveals that both of the slower responses have
R, = 354 () instead of 268 (). The higher value of R, means actually a higher gain, as
can be seen in Fig. 5.1.9, where the original system was set for a gain of Ay ~ 10, in
contrast with the higher value, Ay ~ 13. The higher gain results from a different
tuning of the 3-pole T-coil stage, in accordance with the different pole assignment.

Since our primary design goal is the bandwidth and not gain, we might try to
recalculate the system by lowering the initial value of R} . If we select a value (from
the 0.5 % tolerance E-96 series of standard values) of 316 (2, the gain will be very
close to the original one. This situation is shown in Fig.5.1.10. The difference
between the two system pairs is much smaller, however, the recalculated pair still has
a slightly lower bandwidth. This fact nicely illustrates that our initial assumptions of
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how to achieve maximum bandwidth (within a given configuration) were not guessed
out of sheer luck.

14

12

10

0 2 4 6 8 10 12 14 16 18 20
t [ns]

Fig.5.1.9 : The slower responses of Fig. 5.1.8, when plotted with the actual gain,
are actually those with a higher value of R, and therefore a higher gain.

12

10 12 14 16 18 20
t [ns]

Fig.5.1.10 : If the high-gain responses are recalculated by reducing Ry from the
original 360 2 to 316 (2, the gain is equal in all four cases, However, those pole
assignments, which put the poles with the higher imaginary part at the output stage,
still result in a slightly slower system.
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Table 5.1
Ry [] 360 360 | 360 | 360 316 | 316
pole order: | abcd abdc | acbd | adbc acbd | adbc
Ay 9.667 9.667 | 12.74 | 12.74 9.817 | 9.817

R, [Q] 268.5 286.5 | 353.9 | 353.9 310.7 | 310.7
Cc [pF] 4.173 2177 | 2.870 | 7.249 2.870 | 7.249
Ca [pF] 5.838 11.19 | 14.75 | 5.838 14.75 | 5.838
Chvb_[pF] 0.779 0.779 | 1.201 | 1.201 1.201 | 1.201
Cva [pF] 1.851 1.222 | 1.045 | 1.851 1.045 | 1.851
Ly [pH] 1.426 1.426 | 1.426 | 1.426 1.098 | 1.098
L. [pH] 0.153 0.080 | 0.162 | 0.410 0.125 | 0.316
Lq [pH] 0.421 0.807 | 1.847 | 0.731 1.423 | 0.563
ky 0.558 0.558 | 0.392 | 0.392 0.392 | 0.392
kq —0.118 | 0.392 | 0.558 | —0.118 | 0.558 | —0.118

TableS.1: Circuit components for 4 of the 6 possible pole assignments. The last two
columns represent the same pole assignment as the middle two, but have been
recalculated for Ry, = 3162 and nearly equal gain. The first column is the example
calculated in the text and its response is one of the two fastest. The other fast system
(second column) is probably non-realizable (in discrete form), due to C. ~ 2 pF. The
last column (adbc) is, on the other hand, only slightly slower, but probably much easier
to realize (T-coil coupling and the capacitance values).

In Table 5.1 we have collected all the design parameters for the four out of six
possible pole assignments. The systems in the last two columns have the same pole
assignments as in the middle two, but have been recalculated from a lower Ry, value,
in order to obtain the total voltage gain nearly equalto the first system. From a
practical point of view, the first and the last column are the most interesting: the
system represented by the first column is the fastest (as the second one, but the later is
difficult to realize, mainly due to low C. value), while the last one is only slightly
slower but much easier to realize, mainly due to a lower magnetic coupling k;, and the
non-problematic values of C; and Cjy.

The main problem of the first column system is the relatively high magnetic
coupling factor of the output T-coil, k,. A possible way to improve this could be by
applying a certain amount of emitter peaking to either (); or ()3 emitter circuit. But
then, we would get a 9-pole system and we would have to recalculate everything,
which, by itself, is not a difficult task if we use the geometrical synthesis method, as
we have seen. The problem with using emitter peaking would result from the required
negative input impedance compensation and the associated stray capacitance of the
compensating network.

A 9-pole system might be more easily implemented if, instead of the 3-pole
section, we would use another L+T-coil 4-pole network. The real pole could then be
provided by the signal source resistance and the (); input capacitance, which we have
chosen to neglect so far. With 9 poles, both T-coils can be made to accommodate
those two pole-pairs with moderate imaginary part values (because the T-coil coupling
factor depends only on the pole angle ), so that the system bandwidth could be more
easily maximized. A problem could arise with a low value of some capacitances,
which might become difficult to achieve. But, as it is evident from Table 5.1, there are
many possible variations (their number increases as the factorial of the number of

-5.20 -



Part 5 : System synthesis and integration P.Stari¢, E-Margan

poles), so that a clever compromise can always be made. Of course, with a known
signal source, an additional inductive peaking could be applied at the input, resulting
in a total of 11 or maybe even 13 poles, but then the component tolerances and the
adjustment precision would set the limits of realizability.

Finally, we would like to verify the initial claim that the input real pole s;, due
to the signal source and base spread resistance and the total input capacitance, can be
neglected if it is larger than the system real pole s,. Since the input pole is separated
from the rest of the system by the first cascode stage, it can be accounted for by
simply multiplying the system transfer function by it. In the frequency response, its
influence is barely noticeable. In the step-response, Fig.5.1.11, it affects mostly the
envelope delay and the overshoot, while the risetime (in accordance with the
frequency response) remains nearly the same.
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Fig.5.1.11 : If the real input pole s; is at least twice as large as the system real
pole s,, its influence on the step response can be seen merely as an increased
envelope delay and a reduced overshoot, while the risetime remains nearly
identical.

Usually, the signal source impedance is 502 or less. With an input
capacitance of a few pF, the input pole can easily be several times larger than the
system real pole. However, in most oscilloscopes an input buffer stage, with variable
gain/attenuation, takes care of adapting the signal amplitude to the required level.
Then, its output impedance, seen by the input capacitance of our amplifier, can be
high enough that we would be forced to account for it. In such cases, as already stated
before, it might become feasible to replace the 3-pole peaking network by another
4-pole L+T-coil network and make the input pole the main system real pole.

As already mentioned, the high capacitance of the CRT vertical deflection
plates is the dominant cause of bandwidth limitation. The most advanced CRTs from
the analog 'scope era have the deflection plates broken into a number of sections,
connected externally by a series of T-coils, thus reducing the capacitance seen by the
amplifier to just a fraction of the original value. In the same time, the T-coils provide
a delay required to match the signal propagation to the electron velocity in the writing
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beam (finite travel time by the deflection plates and some non-negligible relativistic !
effects), aiding to a better beam control.

I'In vacuum, a homogeneous electric field of strength £ = V /I, where V is the voltage potential
between the anode and cathode and [ is the field length (the distance between the anode and cathode),
an electron emitted by the hot cathode will be accelerated at the rate :

F ) gV

= — = =& (F1)
me Me mel

where the electron charge g. = -1.602 x 107!° As, the electron (rest) mass m. = 9.1095 x 107! kg.
By assuming a constant acceleration (from a homogeneous field), the final electron velocity,
just before hitting the anode, or passing through a small hole in it, is calculated as :

NEIOS (F2)
Me

Eq. F2 can be considered correct if the final velocity is small in comparison with the velocity
of light, otherwise we must apply the Theory of Relativity. For an anode voltage of only 100V, the
above equation would give a velocity v = 5.93 x 10%m/s, which is almost 2 % of the velocity of light,
c =2.99792458 x 108m/s ~ 3 x 108 m/s. Usually, CRT anode voltage values range from 25kV to
35kV, resulting in final electron velocities of about ¢/3.

The Theory of Relativity, as formulated by Albert Einstein in 1905, predicts an increase of
the mass of an accelerated object in comparison to its rest mass, in accordance with the relation :

1
My = My ——— (F3)

()
c
where m;, is the object relativistic mass, m is the object rest mass, v is the object velocity and c is the
velocity of light. According to this, the electron mass changes with v, but v also changes due to the
acceleration enforced by the electric field, so we must calculate the final velocity and mass iteratively.

Once the electron goes through the anode, its velocity towards the screen remains constant.
But when it enters the deflection plates, only the transversal velocity components change and the
electron path is parabolic, then linear again between the deflection plates and the screen. Since the
deflection voltages are relatively low (<100 V), we can use Eq. F2 to calculate the deflection (but now
V' is the voltage between the deflection plates) ; however, instead of the rest electron mass me, the
relativistic mass must be used. The relativistic mass, which the electron has acquired from the
acceleration in the anode-cathode field, is calculated by Eq. F3.

For example, if we assume the non-deflected electron velocity v = ¢/3, the electron would
acquire a mass m, =~ 1.06 me. By taking this back into Eq. F2, the vertical velocity component would
be lower by some 3 % and, to get the desired deflection, we would have to increase the deflection
voltage by the same amount. This is corrected by simply increasing the amplifier gain.

A more difficult problem arises from the fact that the electron takes a finite amount of time to
travel the deflection field. For a constant or a slowly changing field, this time does not have to be
accounted for; however, when the deflection potential changes by several volts per nanosecond, this
time becomes important, because it would affect both the horizontal and vertical deflection. By
assuming again v = ¢/3 and a deflection field length (in the anode to screen direction) d = 5 cm, the
time which the electron would spend in the deflection field is:

3d 3 x5 x 1072 [m]

ti=——= 3% 10° [/ =0.5ns (F4)

and this time is equal to the risetime of a 700 MHz oscilloscope. Therefore, the amount of deflection,
in both horizontal and vertical direction, would depend also on the signal slew-rate and not only on its
amplitude, as it should.

This problem is solved by breaking the plates into several smaller sections and introducing
an appropriate signal delay between them, so that the electron is being deflected by a nearly constant
filed throughout the travel time.
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