Electron track reconstruction in the ATLAS experiment

Matevž Tadel

Allan Clark, Marko Mikuž, Alan Poppleton

http://www-f9.ijs.si/~matevz/ATLAS/

- performance analysis: single particles, pion rejection, electrons in jets & pile-up construction of a pessimistic electron reconstruction algorithm detailed analysis of bremsstrahlung effects Electron reconstruction: situation in the ATLAS detector
- Applications of the algorithm: benchmarking against simulated physics processes $B^0 \to J/\Psi \to ee$

 $H \rightarrow ZZ^{(\star)} \rightarrow 4e$

 $Z \rightarrow ee$

TDR detector layout used for simulations realistic magnetic field

${\sf Problem\ statement:}\ {\sf large\ amount\ of\ material} \Rightarrow {\sf bremsstrahlung\ effects\ dominate\ reconstruction}$

- 1. p_T **resolution** deteriorated with traversed material improves with more measurements & track length
- Reconstruction/Identification efficiency cuts required to retain resolution and suppress fakes

requiring a full-length track is too restrictive

3. **ECAL/ID matching** for identification disastrous early bremsstrahlung \Rightarrow position matching sufficient

Fraction of e's that lost more that 10% of their energy:

0.68	0.70	≈ 0.75	0.52	TRT
0.49	0.45	≈ 0.58	0.32	SCT
0.22	0.35	≈ 0.22	0.11	pixels
weighted sum	1.9 1.9 - 2.45		$\eta {\rm bins} \big 0 - 0.6 \big 0.6 -$	η bins

 p_T **deterioration:** fraction of electrons out of 10%

cut on $p_T^{
m true}$

 \triangle Less than 10% loss by the end of the SCT

all events

 \bigstar **More** than 10% loss by the end of the pixels catastrophic events \to ID measurement doomed new measurements should deteriorate p_T

 \Diamond **More** than 10% loss by the end of the SCT excluding \bigstar : a good p_T measurement should be possible

ECAL measurements:

 3×7 window for clustering

ECAL efficiency: 41.9% ($1.5 \, \mathrm{GeV}$), 74.6% ($2 \, \mathrm{GeV}$),

94.4% (3 GeV) and 98.6% (5 GeV)

 η measurement not influenced

arphi and E_T measurements correlated

for $E_T > 10\,{\rm GeV}$ ECAL measurement is almost independent of bremsstrahlung

	0/ 1	-		1
	% bremmed energy	Barrel	Iransition	Endcap
	$06 \le$	0.26	0.12	0.21
Primary	≥ 80	0.47	0.27	0.38
	≥ 70	0.62	0.42	0.53
Diman	$00 \le$	0.69	0.40	0.56
Casadan +	≥ 80	0.87	0.67	0.79
Secondary	≥ 70	0.95	0.84	0.91

4	ω	2	1	Case
0.096	0.066	0.122	0.716	Barrel
0.302	0.080	0.122	0.496	Transition
0.217	0.190	0.116	0.477	End-cap

Bremsstrahlung scenarios: considering reconstruction till the end of the SCT

- 1. Negligible amount of bremsstrahlung (55% of events): below 10% energy loss by the end of the SCT
- these events can be handled with the usual fitting procedure
- 2. Single measurable bremsstrahlung photon emission (12%): above 10% energy loss by the end of the SCT;
- the primary photon originates from the SCT & takes > 80% of all the emitted energy ID bremsstrahlung recovery can be applied (i.e., allowing for a single kink on a track)
- 3. Early hard bremsstrahlung photon emission (10%):
- can be reconstructed with a poorer p_T resolution as above with the hardest bremsstrahlung occurring within the pixels
- 4. Two (or more) hard bremsstrahlung photon emissions (23%), early ones not excluded recuperation of these events is questionable as it depends on several factors

ieElRec: algorithm for electron identification and reconstruction

Design decisions:

- 1. Second stage reconstruction: inputs are lists of tracks in the ID \oplus EM clusters
- 2. Accept also partial tracks: track searching package doesn't have to perform the brem-fit iPatRec modified to follow this convention
- 3. Track's head: used for track parameter determination select the track segment best matching to the seeding EM cluster
- Track's tail: fake suppression & TRT association there is NOT enough information to fully reconstruct most of the bremsstrahlung occurrences

Goals:

- **Electron identification:** a prerequisite; photon and pion separation \oplus identification in jets
- 2 Bremsstrahlung tagging: attempt to estimate the amount and location of a hard bremsstrahlung linked with electron identification as quantities used can become corrupted
- 3. An improvement of p_T resolution: important at energies below $20\,\mathrm{GeV}$ (where the tracker precision is better) enables a better ECAL calibration
- 4. Improvement of perigee parameters: allows for smaller errors in reconstruction of decaying particles no improvement of longitudinal parameters expected

Modifications of iPatRec:

secondary tracks (failed vertex association) truncated tracks (failed TRT extrapolation)

TRT extrapolation for secondary tracks

mid-SCT bremsstrahlung

Selection algorithm:

Project ID track (or track segment) to ECAL

Normalize differences by using look-up tables extracted from simulated data $(p_T: 1.5\,\mathrm{GeV} \nearrow 60\,\mathrm{GeV})$

 $oldsymbol{\delta\eta}\sim\eta^E-\eta^{ ext{iPat}}$ ⇒ Gaussian

 $oldsymbol{\delta arphi} \sim -\mathrm{sgn}(\mathrm{e})(arphi^{\mathrm{E}} - arphi^{\mathrm{iPat}}) \quad \Rightarrow \quad ext{brem tails, correlated}$

For extraction of track parameters select track segment best realizing the ID/ECAL matching

Pion rejection: ~ 30 achieved by requiring a good ID/ECAL matching

TR information

longitudinal profile of the EM shower

Good match (M1):

 $|\delta p| < 3 \land |\delta \varphi| < 3$

 $[\sim 80\%$ at low p_T , 86% for $p_T > 10\,{\rm GeV}]$

tighter cuts can be used to obtain a cleaner sample

Imprecise ECAL (M2): $-3 < \delta p < 1 \land -10 < \delta \varphi < -3$

[3% at $p_T=3\,\mathrm{GeV}$]

relevant for $p_T \leq 10 \, \mathrm{GeV}$

selects tails of the ECAL measurement

Poor ID (M3):

 $\delta p > 1 \ \land \ \delta \varphi < 3$

 $[\sim 10\% \text{ for } p_T > 10\,\mathrm{GeV}]$ early hard bremsstrahlung; p_T underestimated

Poor ECAL (M4):

 $\delta p < -3$

[10% at $p_T=10\,\mathrm{GeV}]$

relevant for $p_T \lesssim 30\,\mathrm{GeV}$

hard bremsstrahlung after a good p_T measurement

Unknown (M0):

[3% at $p_T=2\,\mathrm{GeV}]$

all cuts failed

occurs due to multiple scattering relevant for $p_T \lesssim 20\,\mathrm{GeV}$

Efficiency as a function of p_T and η :

Improvement of the p_T measurement:

$$\Delta_{p_T}^{\texttt{ieElRec}} = \frac{|p_T^{\texttt{true}} - p_T^{\texttt{iPatRec}}| - |p_T^{\texttt{true}} - p_T^{\texttt{ieElRec}}|}{|p_T^{\texttt{true}}|}$$

transverse impact parameter resolution likewise improved

Electrons in jets: studied on $B^0 \to J/\Psi \to ee$ sample: $p_T > 2 \, {\rm GeV}$, $|\eta| < 2.5$; $\sim 63\,000$ events

Different track multiplicities (up to 8) available multiplicity: charged particles $(p_T>1\,{\rm GeV})$ contained within HCAL cluster $(\pm 2 \times {\rm rms})$

No drop in the ieElRec efficiency observed

Migration between ID/ECAL match types

$$\nearrow$$
 M3 (\sim 10%), M0 (\sim 2%)

$$\searrow$$
 M1 (~8%), M4 (~2.5%), M2 (~1.5%)

No degradation of ID performance ⇒ ECAL pollution

Additional energy from jet produces new EM clusters for $E_T < 4\,\mathrm{GeV}$

- ightarrow most of the resurrected clusters give poor matches
- ightarrow some previously good matches are spoiled

Effects of pile-up: high luminosity $\rightarrow \sim 23$ soft hadronic interactions per bunch crossing

problem for sub-detectors with long signal collection times: TRT ($\sim 60~\mathrm{ns}$ + poor granularity), ECAL ($\lesssim 500~\mathrm{ns}$) 7.5 charged ig(0.64 for a $p_T>1\,{
m GeV}$ cut $ig)\oplus9$ neutral particles ig(90% photons, mean $E_T=235\,{
m MeV}ig)$ per unit η per event

ECAL efficiency: increased for $p_T < 5 \,\mathrm{GeV}$ 32% at $1.5 \,\mathrm{GeV}$, 10% at $2 \,\mathrm{GeV}$, $\sim 1\%$ at $3 \,\mathrm{GeV}$ **Relative to the ECAL:** iPatRec too efficient road $\Delta \varphi \times \eta = 45^\circ \times 0.1$ around ECAL used

All things considered: M1 efficiency drops 5% $p_T \le 5 \, \mathrm{GeV}$, $\sim 2\%$ at $p_T = 10 \, \mathrm{GeV}$

Newly reconstructed EM clusters \oplus lost from **M1**:

M0: uncorrelated track / EM cluster

M3: poor ID measurement (signifies early brem) additional deposition of energy in the vicinity of the *true* EM cluster

Distributions of $E_T/E_T^{
m true}$ for different match types support the statements

Additional noise due to pile-up $\sim 100\,\mathrm{MeV}$

10

Reconstruction efficiency studied as a function of $m_{J\!\!/\!\Psi}$ cut and *pion ambiguity* $B^0 \to J/\Psi \to ee$: physics $\sin 2\beta$, ECAL calibration; 40% \nearrow to 78%; 65% for a 10% $m_{J\!/\!\Psi}$ cut and a reasonable A_π generation cuts: $p_T > 2\,\mathrm{GeV}$, $|\eta| < 2.5$; $\sim 30\,000$ events

All secondary vertex parameters were studied e.g., \mathbf{Z}_0 resolution $\rightarrow z$ -coordinate of the vertex $\sigma(Z_0) \approx 1.2\,\mathrm{mm}$ compare to $\sigma(z) = 55.6\,\mathrm{mm}$ linear degradation with avg η a factor 2 decrease over the p_T range

dP / dN

- All σ = 0.092 GeV - M1 σ = 0.085 GeV - M1b⁺ σ = 0.072 GeV - BB σ = 0.065 GeV - EE σ = 0.131 GeV

2.

2.6

2.8

11

 $Z^0 \rightarrow ee$: basis of stand-alone ECAL calibration;

generation cuts: $|\eta| < 2.5$ and $p_T > 5 \,\mathrm{GeV};\,30\,000$ events

ID provides: vertex parameters tags events with a hard FSR or early bremsstrahlung Z⁰ vertex parameters studied

Comparison with the TDR:

realistic magnetic field resolutions comparable **but** tail content reduced

 $H \rightarrow ZZ^{(\star)} \rightarrow 4e$:

generation cuts: $|\eta| < 2.5$ and $p_T > 5 \,{\rm GeV}$; $10\,000$ events for each of $m_{\rm H}$ =130, 150, 180, $200\,{\rm GeV}$

For low m_{H} ID can contribute to m_{Z^\star} reconstruction Study of z_0 and a_0 of individual e's

background rejection ($\mathsf{Z}^0 b ar{b}$ and $t ar{t} o b ar{b} \mathsf{W}^+ \mathsf{W}^-$)

 Z^0 – $Z^{0(\star)}$ opening angle

 m_{H} reconstruction:

effects of FSR, early bremsstrahlung and $m_{\rm Z^0}$ constraint resolutions comparable to TDR; efficiency can be improved

Conclusions:

usage of an appropriate algorithm results in 5% increase of electron reconstruction efficiency almost insensitive to high-luminosity pile-up and the presence of jets all but the hardest bremsstrahlung occurrences can be tagged

ightarrow for $p_T \gtrsim 20 \, {
m GeV}$ also recuperated using the ECAL measurement

Pixel detectors and inner SCT layers crucial to a reliable electron reconstruction and identification every effort should be made to keep these layers operational

Physics analysis:

Increase of efficiency: $\sim 4\%$ per electron

Better tagging of events with a hard FSR or an early bremsstrahlung

Improvement of p_T measurement and transverse track parameters improves physical parameters (e.g., invariant mass resolution)

better background rejection and/or b-tagging

Future:

Compare/update to the new detector layout \Downarrow expect $\sim 50\%$ increase of irrecoverable early bremsstrahlung

Follow iPatRec's migration into Athena

Publish a scientific note covering all aspects of electron reconstruction single electron efficiencies & resolutions

resolutions of secondary vertex quantities