// Rotation and transformation doxygen page
/**
\page TransformPage Vector Transformations
Transformations classes are grouped in Rotations (in 3 dimensions), Lorentz transformations and Poincarre transformations, which are Translation/Rotation combinations. Each group has several members which may model physically equivalent trasformations but with different internal representations.
All the classes are non-template and use double precision as the scalar type
The following types of transformation classes are defined:
Rotation3D rI; // create a summy rotation (Identity matrix) RotationX rX(M_PI); // create a rotationX with an angle PI EulerAngles rE(phi, theta, psi); // create a Euler rotation with phi,theta,psi angles XYZVector u(ux,uy,uz); AxisAngle rA(u, delta); // create a rotation based on direction u with delta angleIn addition, all rotations and transformations (other than the axial rotations) and transformations are constructible from (begin,end) iterators or from pointers whicih behave like iterators.
double data[9]; Rotation3D r(data, data+9); // create a rotation from a rotation matrix std::vectorAll rotations, except the axial rotations, are constructible and assigned from any other type of rotation (including the axial):w(12); Transform3D t(w.begin(),w.end()); // create a Transform3D from the content of a std::vector
Rotation3D r(ROOT::Math::RotationX(PI)); // create a rotation 3D from a rotation along X axis of angle PI EulerAngles r2(r); // construct an Euler Rotation from A Rotation3D AxisAngle r3; r3 = r2; // assign an Axis Rotation from an Euler Rotation;Transform3D (rotation + translation) can be constructed from a rotation and a translation vector
Rotation3D r; XYZVector v; Transform3D t1(r,v); // construct from rotation and then translation Transform3D t2(v,r); // construct inverse from first translation then rotation Transform3D t3(r); // construct from only a rotation (zero translation) Transform3D t4(v); // construct from only translation (identity rotation)
XYZVector v1(...); Rotation3D r(...); XYZVector v2 = r*v1; // rotate vector v1 using r v2 = r(v1) // equivalentTransformations can be combined using the operator * . Note that the rotations are not commutative ans therefore the order is important
Rotation3D r1(...); Rotation3D r2(...); Rotation3D r3 = r2*r1; // obtain a combine rotation r3 by applying first r1 then r2We can combine rotations of different types, like Rotation3D with any other type of rotations. The product of two different axial rotations return a Rotation3D:
RotationX rx(1.); RotationY ry(2.); Rotation3D r = ry * rx; // rotation along X and then Y axisIt is also possible to invert all the transformation or return the inverse of a transformation
Rotation3D r1(...); r1.Invert(); // invert the rotation modifying its content Rotation3D r2 =r1.Inverse(); // return the inverse in a new rotation classWe have used rotation as examples, but all these operations can be applied to all the transformation classes. Rotation3D, Transform3D and Translation3D classes can all be combined via the operator *.
Rotation3D r(AxisAngle(phi,ux,uy,uz)); // rotation of an angle phi around u. Translation3D d(dx,dy,dz); // translation of a vector d Transform3D t1 = d * r; // transformation obtained applying first the rotation Transform3D t2 = r * d; // transformation obtained applying first the translation
RotationX rx; rx.SetComponents(1.) // set agle of the X rotation double d[9] = {........} Rotation3D r; r.SetComponents(d,d+9); // set 9 components of 3D rotation double d[16]; LorentzRotation lr; lr.GetComponents( d, d+16); // get 16 components of a LorentzRotation TMatrixD(3,4) m; Transform3D t; t.GetComponens(m); // fill matrix of size 3x4 with components of the transform3D tFor more detailed documentation on all methods see the reference doc for the specific transformation class. */