#ifndef ROOT_Math_MatrixRepresentationsStatic
#define ROOT_Math_MatrixRepresentationsStatic 1
#ifndef ROOT_Math_StaticCheck
#include "Math/StaticCheck.h"
#endif
namespace ROOT {
namespace Math {
template <class T, unsigned int D1, unsigned int D2=D1>
class MatRepStd {
public:
typedef T value_type;
inline const T& operator()(unsigned int i, unsigned int j) const {
return fArray[i*D2+j];
}
inline T& operator()(unsigned int i, unsigned int j) {
return fArray[i*D2+j];
}
inline T& operator[](unsigned int i) { return fArray[i]; }
inline const T& operator[](unsigned int i) const { return fArray[i]; }
inline T apply(unsigned int i) const { return fArray[i]; }
inline T* Array() { return fArray; }
inline const T* Array() const { return fArray; }
template <class R>
inline MatRepStd<T, D1, D2>& operator+=(const R& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] += rhs[i];
return *this;
}
template <class R>
inline MatRepStd<T, D1, D2>& operator-=(const R& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] -= rhs[i];
return *this;
}
template <class R>
inline MatRepStd<T, D1, D2>& operator=(const R& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] = rhs[i];
return *this;
}
template <class R>
inline bool operator==(const R& rhs) const {
bool rc = true;
for(unsigned int i=0; i<D1*D1; ++i) {
rc = rc && (fArray[i] == rhs[i]);
}
return rc;
}
enum {
kRows = D1,
kCols = D2,
kSize = D1*D2
};
private:
T fArray[kSize];
};
template<unsigned int D>
struct RowOffsets {
RowOffsets() {
int v[D];
v[0]=0;
for (unsigned int i=1; i<D; ++i)
v[i]=v[i-1]+i;
for (unsigned int i=0; i<D; ++i) {
for (unsigned int j=0; j<=i; ++j)
fOff[i*D+j] = v[i]+j;
for (unsigned int j=i+1; j<D; ++j)
fOff[i*D+j] = v[j]+i ;
}
}
int operator()(unsigned int i, unsigned int j) const { return fOff[i*D+j]; }
int apply(unsigned int i) const { return fOff[i]; }
int fOff[D*D];
};
template <class T, unsigned int D>
class MatRepSym {
public:
MatRepSym() :fOff(0) { CreateOffsets(); }
typedef T value_type;
inline const T& operator()(unsigned int i, unsigned int j) const {
return fArray[Offsets()(i,j)];
}
inline T& operator()(unsigned int i, unsigned int j) {
return fArray[Offsets()(i,j)];
}
inline T& operator[](unsigned int i) {
return fArray[Offsets().apply(i) ];
}
inline const T& operator[](unsigned int i) const {
return fArray[Offsets().apply(i) ];
}
inline T apply(unsigned int i) const {
return fArray[Offsets().apply(i) ];
}
inline T* Array() { return fArray; }
inline const T* Array() const { return fArray; }
template <class R>
inline MatRepSym<T, D>& operator=(const R& rhs) {
STATIC_CHECK(0==1,
Cannot_assign_general_to_symmetric_matrix_representation);
return *this;
}
inline MatRepSym<T, D>& operator=(const MatRepSym& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] = rhs.Array()[i];
return *this;
}
template <class R>
inline MatRepSym<T, D>& operator+=(const R& rhs) {
STATIC_CHECK(0==1,
Cannot_add_general_to_symmetric_matrix_representation);
return *this;
}
inline MatRepSym<T, D>& operator+=(const MatRepSym& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] += rhs.Array()[i];
return *this;
}
template <class R>
inline MatRepSym<T, D>& operator-=(const R& rhs) {
STATIC_CHECK(0==1,
Cannot_substract_general_to_symmetric_matrix_representation);
return *this;
}
inline MatRepSym<T, D>& operator-=(const MatRepSym& rhs) {
for(unsigned int i=0; i<kSize; ++i) fArray[i] -= rhs.Array()[i];
return *this;
}
template <class R>
inline bool operator==(const R& rhs) const {
bool rc = true;
for(unsigned int i=0; i<D*D; ++i) {
rc = rc && (operator[](i) == rhs[i]);
}
return rc;
}
enum {
kRows = D,
kCols = D,
kSize = D*(D+1)/2
};
void CreateOffsets() {
static RowOffsets<D> off;
fOff = &off;
}
inline const RowOffsets<D> & Offsets() const {
return *fOff;
}
private:
T fArray[kSize];
RowOffsets<D> * fOff;
};
}
}
#endif // MATH_MATRIXREPRESENTATIONSSTATIC_H
Last change: Wed Jun 25 08:29:49 2008
Last generated: 2008-06-25 08:29
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.