// @(#)root/fumili:$Id: TFumiliMinimizer.cxx 26866 2008-12-12 10:50:07Z moneta $
// Author: L. Moneta Wed Oct 25 16:28:55 2006

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2006  LCG ROOT Math Team, CERN/PH-SFT                *
 *                                                                    *
 *                                                                    *
 **********************************************************************/

// Implementation file for class TFumiliMinimizer

#include "TFumiliMinimizer.h"
#include "Math/IFunction.h"
#include "Math/Util.h"
#include "TError.h"

#include "TFumili.h"

#include <iostream>
#include <cassert>
#include <algorithm>
#include <functional>



#ifdef USE_FUMILI_FUNCTION
bool gUseFumiliFunction = true;
//#include "FumiliFunction.h"
// fit method function used in TFumiliMinimizer 

#include "Fit/PoissonLikelihoodFCN.h"
#include "Fit/LogLikelihoodFCN.h"
#include "Fit/Chi2FCN.h"
#include "TF1.h"
#include "TFumili.h"

template<class MethodFunc> 
class FumiliFunction  : public ROOT::Math::FitMethodFunction { 

   typedef ROOT::Math::FitMethodFunction::BaseFunction BaseFunction;

public: 
   FumiliFunction(TFumili * fumili,  const ROOT::Math::FitMethodFunction * func) : 
      ROOT::Math::FitMethodFunction(func->NDim(), func->NPoints() ),
      fFumili(fumili),
      fObjFunc(0)
   {
      fObjFunc = dynamic_cast<const MethodFunc *>(func);
      assert(fObjFunc != 0);

      // create TF1 class from model function
      fModFunc = new TF1("modfunc",ROOT::Math::ParamFunctor( &fObjFunc->ModelFunction() ) );
      fFumili->SetUserFunc(fModFunc);
   }

   ROOT::Math::FitMethodFunction::Type_t Type() const { return fObjFunc->Type();  }

   FumiliFunction * Clone() const { return new FumiliFunction(fFumili, fObjFunc); }


   // recalculate data elemet using Fumili stuff
   double DataElement(const double *par, unsigned int i, double * g) const {
      // suppose type is bin likelihood
      unsigned int npar = fObjFunc->NDim();
      double  y = 0;
      double invError = 0; 
      const double *x = fObjFunc->Data().GetPoint(i,y,invError);
      double fval  = fFumili->EvalTFN(g,const_cast<double *>( x));
      fFumili->Derivatives(g, const_cast<double *>( x));

      if ( fObjFunc->Type() == ROOT::Math::FitMethodFunction::kLogLikelihood) {
         double logPdf =   y * ROOT::Math::Util::EvalLog( fval) - fval; 
         for (unsigned int k = 0; k < npar; ++k) {
            g[k] *= ( y/fval - 1.) ;//* pdfval; 
         }
         
 //         std::cout << "x = " << x[0] << " logPdf = " << logPdf << " grad"; 
//          for (unsigned int ipar = 0; ipar < npar; ++ipar) 
//             std::cout << g[ipar] << "\t";
//          std::cout << std::endl;
         
         return logPdf; 
      }
      else if (fObjFunc->Type() == ROOT::Math::FitMethodFunction::kLeastSquare ) { 
         double resVal = (y-fval)*invError; 
         for (unsigned int k = 0; k < npar; ++k) {
            g[k] *= -invError; 
         }
         return resVal;
      }

      return 0;
   }


private: 

   double DoEval(const double *x ) const { 
      return (*fObjFunc)(x);
   }

   TFumili * fFumili; 
   const MethodFunc * fObjFunc; 
   TF1 * fModFunc; 
   
};
#else 
bool gUseFumiliFunction = false;
#endif
//______________________________________________________________________________
//
//  TFumiliMinimizer class implementing the ROOT::Math::Minimizer interface using 
//  TFumili. 
//  This class is normally instantiates using the plug-in manager 
//  (plug-in with name Fumili or TFumili)
//  In addition the user can choose the minimizer algorithm: Migrad (the default one), Simplex, or Minimize (combined Migrad + Simplex)
//  
//__________________________________________________________________________________________

// initialize the static instances

ROOT::Math::FitMethodFunction * TFumiliMinimizer::fgFunc = 0; 
ROOT::Math::FitMethodGradFunction * TFumiliMinimizer::fgGradFunc = 0; 
TFumili * TFumiliMinimizer::fgFumili = 0; 


ClassImp(TFumiliMinimizer)


TFumiliMinimizer::TFumiliMinimizer(int  ) : 
   fDim(0),
   fFumili(0)
{
   // Constructor for TFumiliMinimier class 

   // construct with npar = 0 (by default a value of 25 is used in TFumili for allocating the arrays)
#ifdef USE_STATIC_TMINUIT
   // allocate here only the first time
   if (fgFumili == 0) fgFumili =  new TFumili(0);
   fFumili = fgFumili; 
#else
   if (fFumili) delete fFumili;  
   fFumili =  new TFumili(0);
   fgFumili = fFumili; 
#endif

}


TFumiliMinimizer::~TFumiliMinimizer() 
{
   // Destructor implementation.
   if (fFumili) delete fFumili; 
}

TFumiliMinimizer::TFumiliMinimizer(const TFumiliMinimizer &) : 
   Minimizer()
{
   // Implementation of copy constructor (it is private).
}

TFumiliMinimizer & TFumiliMinimizer::operator = (const TFumiliMinimizer &rhs) 
{
   // Implementation of assignment operator (private)
   if (this == &rhs) return *this;  // time saving self-test
   return *this;
}



void TFumiliMinimizer::SetFunction(const  ROOT::Math::IMultiGenFunction & func) { 
   // Set the objective function to be minimized, by passing a function object implement the 
   // basic multi-dim Function interface. In this case the derivatives will be 
   // calculated by Fumili 

   // Here a TFumili instance is created since only at this point we know the number of parameters 
   // needed to create TFumili
   fDim = func.NDim();
   fFumili->SetParNumber(fDim); 

   // for Fumili the fit method function interface is required
   const ROOT::Math::FitMethodFunction * fcnfunc = dynamic_cast<const ROOT::Math::FitMethodFunction *>(&func);
   if (!fcnfunc) {
      Error("SetFunction","Wrong Fit method function type used for Fumili");
      return;
   }
   // assign to the static pointer (NO Thread safety here)
   fgFunc = const_cast<ROOT::Math::FitMethodFunction *>(fcnfunc); 
   fgGradFunc = 0; 
   fFumili->SetFCN(&TFumiliMinimizer::Fcn);

#ifdef USE_FUMILI_FUNCTION
   if (gUseFumiliFunction) { 
      if (fcnfunc->GetType() == ROOT::Math::FitMethodFunction::kLogLikelihood)  
         fgFunc = new FumiliFunction<ROOT::Fit::PoissonLikelihoodFCN<ROOT::Math::FitMethodFunction::BaseFunction> >(fFumili,fcnfunc);   
      else if (fcnfunc->GetType() == ROOT::Math::FitMethodFunction::kLeastSquare)
         fgFunc = new FumiliFunction<ROOT::Fit::Chi2FCN<ROOT::Math::FitMethodFunction::BaseFunction> >(fFumili,fcnfunc);  
   }
#endif   

}

void TFumiliMinimizer::SetFunction(const  ROOT::Math::IMultiGradFunction & func) { 
   // Set the objective function to be minimized, by passing a function object implement the 
   // multi-dim gradient Function interface. In this case the function derivatives are provided  
   // by the user via this interface and there not calculated by Fumili. 

   fDim = func.NDim(); 
   fFumili->SetParNumber(fDim); 
   
   // for Fumili the fit method function interface is required
   const ROOT::Math::FitMethodGradFunction * fcnfunc = dynamic_cast<const ROOT::Math::FitMethodGradFunction *>(&func);
   if (!fcnfunc) {
      Error("SetFunction","Wrong Fit method function type used for Fumili");
      return;
   }
   // assign to the static pointer (NO Thread safety here)
   fgFunc = 0; 
   fgGradFunc = const_cast<ROOT::Math::FitMethodGradFunction  *>(fcnfunc); 
   fFumili->SetFCN(&TFumiliMinimizer::Fcn);

}

void TFumiliMinimizer::Fcn( int & , double * g , double & f, double * x , int /* iflag */) { 
   // implementation of FCN static function used internally by TFumili.
   // Adapt IMultiGenFunction interface to TFumili FCN static function
   f = TFumiliMinimizer::EvaluateFCN(const_cast<double*>(x),g); 
}

// void TFumiliMinimizer::FcnGrad( int &, double * g, double & f, double * x , int iflag ) { 
//    // implementation of FCN static function used internally by TFumili.
//    // Adapt IMultiGradFunciton interface to TFumili FCN static function in the case of user 
//    // provided gradient.
//    ROOT::Math::IMultiGradFunction * gFunc = dynamic_cast<ROOT::Math::IMultiGradFunction *> ( fgFunc); 

//    assert(gFunc != 0);
//    f = gFunc->operator()(x);

//    // calculates also derivatives 
//    if (iflag == 2) gFunc->Gradient(x,g);
// }

double TFumiliMinimizer::EvaluateFCN(const double * x, double * grad) { 
   // function callaed to evaluate the FCN at the value x 
   // calculates also the matrices of the second derivatives of the objective function needed by FUMILI
   

   //typedef FumiliFCNAdapter::Function Function; 

   

   // reset  
//    assert(grad.size() == npar);
//    grad.assign( npar, 0.0); 
//    hess.assign( hess.size(), 0.0);
   
   double sum = 0; 
   unsigned int ndata = 0; 
   unsigned int npar = 0; 
   if (fgFunc) { 
      ndata = fgFunc->NPoints();
      npar = fgFunc->NDim();
      fgFunc->UpdateNCalls();
   }
   else if (fgGradFunc) { 
      ndata = fgGradFunc->NPoints();
      npar = fgGradFunc->NDim(); 
      fgGradFunc->UpdateNCalls();
   }

   // eventually store this matrix as static member to optimize speed 
   std::vector<double> gf(npar); 
   std::vector<double> hess(npar*(npar+1)/2); 

   // reset gradients
   for (unsigned int ipar = 0; ipar < npar; ++ipar) 
      grad[ipar] = 0;

 
   //loop on the data points
//#define DEBUG
#ifdef DEBUG
   std::cout << "=============================================";
   std::cout << "par = ";
   for (unsigned int ipar = 0; ipar < npar; ++ipar) 
      std::cout << x[ipar] << "\t";
   std::cout << std::endl; 
   if (fgFunc) std::cout << "type " << fgFunc->Type() << std::endl; 
#endif


   // assume for now least-square
   // since TFumili doet not use errodef I must diveide chi2 by 2 
   if ( (fgFunc && fgFunc->Type() == ROOT::Math::FitMethodFunction::kLeastSquare) || 
        (fgGradFunc && fgGradFunc->Type() == ROOT::Math::FitMethodGradFunction::kLeastSquare) ) { 

      double fval = 0; 
      for (unsigned int i = 0; i < ndata; ++i) { 
         // calculate data element and gradient
         // DataElement returns (f-y)/s and gf is derivatives of model function multiplied by (-1/sigma)
         if (gUseFumiliFunction) {
            fval = fgFunc->DataElement( x, i, &gf[0]);
         }
         else { 
            if (fgFunc != 0) 
               fval = fgFunc->DataElement(x, i, &gf[0]);
            else 
               fval = fgGradFunc->DataElement(x, i, &gf[0]);
         }

         // t.b.d should protect for bad  values of fval
         sum += fval*fval;

         // to be check (TFumili uses a factor of 1/2 for chi2)

         for (unsigned int j = 0; j < npar; ++j) { 
            grad[j] +=  fval * gf[j];
            for (unsigned int k = j; k < npar; ++ k) { 
               int idx =  j + k*(k+1)/2; 
               hess[idx] += gf[j] * gf[k];  
            }
         }
      }
   }
   else if ( (fgFunc && fgFunc->Type() == ROOT::Math::FitMethodFunction::kLogLikelihood) || 
             (fgGradFunc && fgGradFunc->Type() == ROOT::Math::FitMethodGradFunction::kLogLikelihood) ) {  



      double fval = 0; 

      //std::cout << "\t x "  << x[0] << "  " << x[1] << "  " << x[2] << std::endl; 

      for (unsigned int i = 0; i < ndata; ++i) { 

         if (gUseFumiliFunction) {
            fval = fgFunc->DataElement( x, i, &gf[0]);
         }
         else { 
            // calculate data element and gradient 
            if (fgFunc != 0) 
               fval = fgFunc->DataElement(x, i, &gf[0]);
            else 
               fval = fgGradFunc->DataElement(x, i, &gf[0]);
         }

         // protect for small values of fval
         //      std::cout << i << "  "  << fval << " log " << " grad " << gf[0] << "  " << gf[1] << "  " << gf[2] << std::endl; 
//         sum -= ROOT::Math::Util::EvalLog(fval);
         sum -= fval;
         
         for (unsigned int j = 0; j < npar; ++j) { 
            double gfj = gf[j];// / fval; 
            grad[j] -= gfj;
            for (unsigned int k = j; k < npar; ++ k) { 
               int idx =  j + k*(k+1)/2;   
               hess[idx] +=  gfj * gf[k];// / (fval );  
            }
         }
      }
   }
   else { 
      Error("EvaluateFCN"," unsupported fit method type");
   }

   // now TFumili excludes fixed prameter in second-derivative matrix
   // ned to get them using the static instance of TFumili
   double * zmatrix = fgFumili->GetZ(); 
   double * pl0 = fgFumili->GetPL0(); // parameter limits
   assert(zmatrix != 0); 
   assert(pl0 != 0); 
   unsigned int k = 0; 
   unsigned int l = 0;
   for (unsigned int i = 0; i < npar; ++i) { 
         for (unsigned int j = 0; j <= i; ++j) { 
            if (pl0[i] > 0 && pl0[j] > 0) { // only for non-fixed parameters         
               zmatrix[l++] = hess[k]; 
            }
            k++;
         }
   }

#ifdef DEBUG
   std::cout << "FCN value " << sum << " grad ";
   for (unsigned int ipar = 0; ipar < npar; ++ipar) 
      std::cout << grad[ipar] << "\t";
   std::cout << std::endl << std::endl;   
#endif


   return 0.5*sum; // fumili multiply then by 2 

}



bool TFumiliMinimizer::SetVariable(unsigned int ivar, const std::string & name, double val, double step) { 
   // set a free variable.
   if (fFumili == 0) { 
      Error("SetVariableValue","invalid TFumili pointer. Set function first ");
   }
#ifdef DEBUG
   std::cout << "set variable " << ivar << " " << name << " value " << val << " step " << step << std::endl; 
#endif

   int ierr = fFumili->SetParameter(ivar , name.c_str(), val, step, 0., 0. ); 
   if (ierr) { 
      Error("SetVariable","Error for parameter %d ",ivar);
      return false; 
   }
   return true; 
}

bool TFumiliMinimizer::SetLimitedVariable(unsigned int ivar, const std::string & name, double val, double step, double lower, double upper) { 
   // set a limited variable.
   if (fFumili == 0) { 
      Error("SetVariableValue","invalid TFumili pointer. Set function first ");
   }
#ifdef DEBUG
   std::cout << "set limited variable " << ivar << " " << name << " value " << val << " step " << step << std::endl; 
#endif
   int ierr = fFumili->SetParameter(ivar, name.c_str(), val, step, lower, upper ); 
   if (ierr) { 
      Error("SetLimitedVariable","Error for parameter %d ",ivar);
      return false; 
   }
   return true; 
}
#ifdef LATER
bool Fumili2Minimizer::SetLowerLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double lower ) {
    // add a lower bounded variable as a double bound one, using a very large number for the upper limit
   double s = val-lower; 
   double upper = s*1.0E15; 
   if (s != 0)  upper = 1.0E15;
   return SetLimitedVariable(ivar, name, val, step, lower,upper);
}
#endif


bool TFumiliMinimizer::SetFixedVariable(unsigned int ivar, const std::string & name, double val) { 
   // set a fixed variable.
   if (fFumili == 0) { 
      Error("SetVariableValue","invalid TFumili pointer. Set function first ");
   }

   
   int ierr = fFumili->SetParameter(ivar, name.c_str(), val, 0., val, val ); 
   fFumili->FixParameter(ivar);

#ifdef DEBUG
   std::cout << "Fix variable " << ivar << " " << name << " value " << std::endl; 
#endif

   if (ierr) { 
      Error("SetFixedVariable","Error for parameter %d ",ivar);
      return false; 
   }
   return true; 
}

bool TFumiliMinimizer::SetVariableValue(unsigned int ivar, double val) { 
   // set the variable value
   if (fFumili == 0) { 
      Error("SetVariableValue","invalid TFumili pointer. Set function first ");
   }
   TString name = fFumili->GetParName(ivar

);
   double  oldval, verr, vlow, vhigh = 0; 
   int ierr = fFumili->GetParameter( ivar, &name[0], oldval, verr, vlow, vhigh); 
   if (ierr) {
      Error("SetVariableValue","Error for parameter %d ",ivar);
      return false; 
   }
#ifdef DEBUG
   std::cout << "set variable " << ivar << " " << name << " value " 
             << val << " step " <<  verr << std::endl; 
#endif

   ierr = fFumili->SetParameter(ivar , name , val, verr, vlow, vhigh ); 
   if (ierr) { 
      Error("SetVariableValue","Error for parameter %d ",ivar);
      return false; 
   }
   return true; 
}

bool TFumiliMinimizer::Minimize() { 
   // perform the minimization using the algorithm chosen previously by the user  
   // By default Migrad is used. 
   // Return true if the found minimum is valid and update internal chached values of 
   // minimum values, errors and covariance matrix. 

   assert(fFumili != 0 );
   // need to set static instance to be used when calling FCN 
   fgFumili = fFumili; 


   double arglist[10]; 

   // error cannot be set in TFumili (always the same)
//    arglist[0] = ErrorUp(); 
//    fFumili->ExecuteCommand("SET Err",arglist,1);

   int printlevel = PrintLevel(); 
   // not implemented in TFumili yet 
   //arglist[0] = printlevel - 1;
   //fFumili->ExecuteCommand("SET PRINT",arglist,1,ierr);

   // suppress warning in case Printlevel() == 0
   if (printlevel == 0)    fFumili->ExecuteCommand("SET NOW",arglist,0);
   else fFumili->ExecuteCommand("SET WAR",arglist,0);


   // minimize: use ExecuteCommand instead of Minimize to set tolerance and maxiter

   arglist[0] = MaxFunctionCalls(); 
   arglist[1] = Tolerance(); 
   int iret = fFumili->ExecuteCommand("MIGRAD",arglist,2);
   fStatus = iret; 
   //int iret = fgFumili->Minimize(); 
   
   // Hesse and IMP not implemented 
//    // run improved if needed
//    if (ierr == 0 && fType == ROOT::Fumili::kMigradImproved) 
//       fFumili->mnexcm("IMPROVE",arglist,1,ierr);

//    // check if Hesse needs to be run 
//    if (ierr == 0 && IsValidError() ) { 
//       fFumili->mnexcm("HESSE",arglist,1,ierr);
//    }


   int ntot; 
   int nfree; 
   double errdef = 0; // err def is not used by Fumili
   fFumili->GetStats(fMinVal,fEdm,errdef,nfree,ntot);

   if (printlevel > 0) 
      fFumili->PrintResults(printlevel,fMinVal);


   assert (static_cast<unsigned int>(ntot) == fDim); 
   assert( nfree == fFumili->GetNumberFreeParameters() );
   fNFree = nfree;
   

   // get parameter values and correlation matrix
   // fumili stores only lower part of diagonal matrix of the free parameters
   fParams.resize( fDim); 
   fErrors.resize( fDim); 
   fCovar.resize(fDim*fDim); 
   const double * cv = fFumili->GetCovarianceMatrix(); 
   unsigned int l = 0; 
   for (unsigned int i = 0; i < fDim; ++i) { 
      fParams[i] = fFumili->GetParameter( i );  
      fErrors[i] = fFumili->GetParError( i );  

      if ( !fFumili->IsFixed(i) ) { 
         for (unsigned int j = 0; j <=i ; ++j) { 
            if ( !fFumili->IsFixed(j) ) {  
               fCovar[i*fDim + j] = cv[l];
               fCovar[j*fDim + i] = fCovar[i*fDim + j]; 
               l++;
            }
         }
      }
   }

   return (iret==0) ? true : false;
}


//    } // end namespace Fit

// } // end namespace ROOT


Last change: Fri Dec 12 12:12:06 2008
Last generated: 2008-12-12 12:12

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.