// @(#)root/tmva $Id: GiniIndex.h 20882 2007-11-19 11:31:26Z rdm $ // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : GiniIndex * * Web : http://tmva.sourceforge.net * * * * Description: Implementation of the GiniIndex as separation criterion * * Large Gini Indices (maximum 0.5) mean , that the sample is well * * mixed (same amount of signal and bkg) * * bkg. Small Indices mean, well separated. * * general defniniton: * * Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2 * * Where: M is a smaple of whatever N elements (events) * * that belong to K different classes * * c(k) is the number of elements that belong to class k * * for just Signal and Background classes this boils down to: * * Gini(Sample) = 2s*b/(s+b)^2 * * * * * * Authors (alphabetical): * * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland * * Xavier Prudent <prudent@lapp.in2p3.fr> - LAPP, France * * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany * * Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada * * * * Copyright (c) 2005: * * CERN, Switzerland * * U. of Victoria, Canada * * Heidelberg U., Germany * * LAPP, Annecy, France * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://ttmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_GiniIndex #define ROOT_TMVA_GiniIndex ////////////////////////////////////////////////////////////////////////// // // // GiniIndex // // // // Implementation of the GiniIndex as separation criterion // // // // Large Gini Indices (maximum 0.5) mean , that the sample is well // // mixed (same amount of signal and bkg) // // bkg. Small Indices mean, well separated. // // general defniniton: // // Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2 // // Where: M is a smaple of whatever N elements (events) // // that belong to K different classes // // c(k) is the number of elements that belong to class k // // for just Signal and Background classes this boils down to: // // Gini(Sample) = 2s*b/(s+b)^2 // ////////////////////////////////////////////////////////////////////////// #ifndef ROOT_TMVA_SeparationBase #include "TMVA/SeparationBase.h" #endif namespace TMVA { class GiniIndex : public SeparationBase { public: // construtor for the GiniIndex GiniIndex() { fName="Gini"; } // copy constructor GiniIndex( const GiniIndex& g): SeparationBase(g) {} //destructor virtual ~GiniIndex(){} // Return the separation index (a measure for "purity" of the sample") virtual Double_t GetSeparationIndex( const Double_t &s, const Double_t &b ); protected: ClassDef(GiniIndex,0) // Implementation of the GiniIndex as separation criterion }; } // namespace TMVA #endif