h1analysis.C: Example of analysis class for the H1 data. | Trees I/O, Queries, Graphics | h1chain.C: creates a TChain to be used by the h1analysis.C class |
// Example of analysis class for the H1 data using code generated by MakeProxy. // =========================================================================== // // This file uses 4 large data sets from the H1 collaboration at DESY Hamburg. // One can access these data sets (277 MBytes) from the standard Root web site // at: ftp://root.cern.ch/root/h1analysis/ // The Physics plots below generated by this example cannot be produced when // using smaller data sets. // // There are several ways to analyze data stored in a Root Tree // -Using TTree::Draw: This is very convenient and efficient for small tasks. // A TTree::Draw call produces one histogram at the time. The histogram // is automatically generated. The selection expression may be specified // in the command line. // // -Using the TTreeViewer: This is a graphical interface to TTree::Draw // with the same functionality. // // -Using the code generated by TTree::MakeClass: In this case, the user // creates an instance of the analysis class. He has the control over // the event loop and he can generate an unlimited number of histograms. // // -Using the code generated by TTree::MakeSelector. Like for the code // generated by TTree::MakeClass, the user can do complex analysis. // However, he cannot control the event loop. The event loop is controlled // by TTree::Process called by the user. This solution is illustrated // by the current code. The advantage of this method is that it can be run // in a parallel environment using PROOF (the Parallel Root Facility). // // A chain of 4 files (originally converted from PAW ntuples) is used // to illustrate the various ways to loop on Root data sets. // Each data set contains a Root Tree named "h42" // The class definition in h1analysis.h has been generated automatically // by the Root utility TTree::MakeSelector using one of the files with the // following statement: // h42->MakeSelector("h1analysis"); // This produces two files: h1analysis.h and h1analysis.C (skeleton of this file) // The h1analysis class is derived from the Root class TSelector. // // The following members functions are called by the TTree::Process functions. // Begin(): called everytime a loop on the tree starts. // a convenient place to create your histograms. // SlaveBegin(): // // Notify(): This function is called at the first entry of a new Tree // in a chain. // Process(): called to analyze each entry. // // SlaveTerminate(): // // Terminate(): called at the end of a loop on a TTree. // a convenient place to draw/fit your histograms. // // To use this file, try the following session // // Root > gROOT->Time(); //will show RT & CPU time per command // //==> A- create a TChain with the 4 H1 data files // The chain can be created by executed the short macro h1chain.C below: // { // TChain chain("h42"); // chain.Add("$H1/dstarmb.root"); // 21330730 bytes 21920 events // chain.Add("$H1/dstarp1a.root"); // 71464503 bytes 73243 events // chain.Add("$H1/dstarp1b.root"); // 83827959 bytes 85597 events // chain.Add("$H1/dstarp2.root"); // 100675234 bytes 103053 events // //where $H1 is a system symbol pointing to the H1 data directory. // } // // Root > .x h1chain.C // //==> B- loop on all events // Root > chain.Process("h1analysis.C") // //==> C- same as B, but in addition fill the event list with selected entries. // The event list is saved to a file "elist.root" by the Terminate function. // To see the list of selected events, you can do elist->Print("all"). // The selection function has selected 7525 events out of the 283813 events // in the chain of files. (2.65 per cent) // Root > chain.Process("h1analysis.C","fillList") // //==> D- Process only entries in the event list // The event list is read from the file in elist.root generated by step C // Root > chain.Process("h1analysis.C","useList") // //==> E- the above steps have been executed via the interpreter. // You can repeat the steps B, C and D using the script compiler // by replacing "h1analysis.C" by "h1analysis.C+" or "h1analysis.C++" // // in a new session with ,eg: // //==> F- Create the chain as in A, then execute // Root > chain.Process("h1analysis.C+","useList") // // The commands executed with the 4 different methods B,C,D and E // produce two canvases shown below: //the Dstar plot
// the Tau D0 plot
// //Author; Philippe Canal from original h1analysis.C by Rene Brun TEventList *elist; Bool_t useList, fillList; TH1F *hdmd; TH2F *h2; //_____________________________________________________________________ void h1analysisProxy_Begin(TTree *tree) { // function called before starting the event loop // -it performs some cleanup // -it creates histograms // -it sets some initialisation for the event list //print the option specified in the Process function. TString option = GetOption(); printf("Starting (begin) h1analysis with process option: %s\n",option.Data()); //some cleanup in case this function had already been executed //delete any previously generated histograms or functions gDirectory->Delete("hdmd"); gDirectory->Delete("h2*"); delete gROOT->GetFunction("f5"); delete gROOT->GetFunction("f2"); } //_____________________________________________________________________ void h1analysisProxy_SlaveBegin(TTree *tree) { // function called before starting the event loop // -it performs some cleanup // -it creates histograms // -it sets some initialisation for the event list //initialize the Tree branch addresses Init(tree); //print the option specified in the Process function. TString option = GetOption(); printf("Starting (slave) h1analysis with process option: %s\n",option.Data()); //some cleanup in case this function had already been executed //delete any previously generated histograms or functions gDirectory->Delete("hdmd"); gDirectory->Delete("h2*"); delete gROOT->GetFunction("f5"); delete gROOT->GetFunction("f2"); //create histograms hdmd = new TH1F("hdmd","dm_d",40,0.13,0.17); h2 = new TH2F("h2","ptD0 vs dm_d",30,0.135,0.165,30,-3,6); fOutput->Add(hdmd); fOutput->Add(h2); //process cases with event list fillList = kFALSE; useList = kFALSE; tree->SetEventList(0); delete gDirectory->GetList()->FindObject("elist"); // case when one creates/fills the event list if (option.Contains("fillList")) { fillList = kTRUE; elist = new TEventList("elist","selection from Cut",5000); } else elist = 0; // case when one uses the event list generated in a previous call if (option.Contains("useList")) { useList = kTRUE; TFile f("elist.root"); elist = (TEventList*)f.Get("elist"); if (elist) elist->SetDirectory(0); //otherwise the file destructor will delete elist tree->SetEventList(elist); } } Double_t h1analysisProxy() { return 0; } //_____________________________________________________________________ Bool_t h1analysisProxy_Process(Int_t entry) { // entry is the entry number in the current Tree // Selection function to select D* and D0. //in case one event list is given in input, the selection has already been done. if (!useList) { float f1 = md0_d; float f2 = md0_d-1.8646; bool test = TMath::Abs(md0_d-1.8646) >= 0.04; if (gDebug>0) fprintf(stderr,"entry #%d f1=%f f2=%f test=%d\n", fChain->GetReadEntry(),f1,f2,test); if (TMath::Abs(md0_d-1.8646) >= 0.04) return kFALSE; if (ptds_d <= 2.5) return kFALSE; if (TMath::Abs(etads_d) >= 1.5) return kFALSE; int cik = ik-1; //original ik used f77 convention starting at 1 int cipi = ipi-1; //original ipi used f77 convention starting at 1 f1 = nhitrp[cik]; f2 = nhitrp[cipi]; test = nhitrp[cik]*nhitrp[cipi] <= 1; if (gDebug>0) fprintf(stderr,"entry #%d f1=%f f2=%f test=%d\n", fChain->GetReadEntry(),f1,f2,test); if (nhitrp[cik]*nhitrp[cipi] <= 1) return kFALSE; if (rend[cik] -rstart[cik] <= 22) return kFALSE; if (rend[cipi]-rstart[cipi] <= 22) return kFALSE; if (nlhk[cik] <= 0.1) return kFALSE; if (nlhpi[cipi] <= 0.1) return kFALSE; // fix because read-only if (nlhpi[ipis-1] <= 0.1) return kFALSE; if (njets < 1) return kFALSE; } // if option fillList, fill the event list if (fillList) elist->Enter(fChain->GetChainEntryNumber(entry)); //fill some histograms hdmd->Fill(dm_d); h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d); return kTRUE; } //_____________________________________________________________________ void h1analysisProxy_SlaveTerminate() { // nothing to be done printf("Terminate (slave) h1analysis\n"); } //_____________________________________________________________________ void h1analysisProxy_Terminate() { printf("Terminate (final) h1analysis\n"); // function called at the end of the event loop hdmd = dynamic_cast<TH1F*>(fOutput->FindObject("hdmd")); h2 = dynamic_cast<TH2F*>(fOutput->FindObject("h2")); if (hdmd == 0 || h2 == 0) { Error("Terminate", "hdmd = %p , h2 = %p", hdmd, h2); return; } //create the canvas for the h1analysis fit gStyle->SetOptFit(); TCanvas *c1 = new TCanvas("c1","h1analysis analysis",10,10,800,600); c1->SetBottomMargin(0.15); hdmd->GetXaxis()->SetTitle("m_{K#pi#pi} - m_{K#pi}[GeV/c^{2}]"); hdmd->GetXaxis()->SetTitleOffset(1.4); //fit histogram hdmd with function f5 using the loglikelihood option TF1 *f5 = new TF1("f5",fdm5,0.139,0.17,5); f5->SetParameters(1000000, .25, 2000, .1454, .001); hdmd->Fit("f5","lr"); //create the canvas for tau d0 gStyle->SetOptFit(0); gStyle->SetOptStat(1100); TCanvas *c2 = new TCanvas("c2","tauD0",100,100,800,600); c2->SetGrid(); c2->SetBottomMargin(0.15); // Project slices of 2-d histogram h2 along X , then fit each slice // with function f2 and make a histogram for each fit parameter // Note that the generated histograms are added to the list of objects // in the current directory. TF1 *f2 = new TF1("f2",fdm2,0.139,0.17,2); f2->SetParameters(10000, 10); h2->FitSlicesX(f2,0,0,1,"qln"); TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1"); h2_1->GetXaxis()->SetTitle("#tau[ps]"); h2_1->SetMarkerStyle(21); h2_1->Draw(); c2->Update(); TLine *line = new TLine(0,0,0,c2->GetUymax()); line->Draw(); //save the event list to a Root file if one was produced if (fillList) { TFile efile("elist.root","recreate"); elist->Write(); } } |
|