Basic Principles of Detection of Ionizing Radiation

Marko Mikuž University of Ljubljana & J. Stefan Institute

Radiation Physics for Nuclear Medicine First MADEIRA Training Course Milano, November 18-21, 2008

Outline

- Radiation in medical imaging
- Interaction of photons with matter
 - Photoelectric effect
 - Compton scattering
- Statistics primer
- Generic detector properties
- A (non)-typical example
 - Scatter detector of Compton camera

Main reference: G.F. Knoll: Radiation Detection and Measurement, J.Wiley&Sons 2000

Radiation in Medical Imaging

- Diagnostic imaging
 - X-rays
 - Planar X-ray
 - Transmission Computed Tomography (CT)
 - Contrast provided by absorption in body: µ(<u>r</u>)
 - Gamma sources
 - Emission Computed Tomography
 - SPECT
 - PET
 - Contrast provided by source distribution in body: A (<u>r</u>)

> Both photons of $E_{\gamma} \sim 20 \leftrightarrow 500$ keV

3

MADEIRA Training, November 18-21, 2008

Radiation Detection

Marko Mikuž

• X-ray tube

Spectrum of W anode at 90 kV

MADEIRA Training, November 18-21, 2008

Typical radio-isotopes

Isotope	Energy (keV)	Half-life
99m Tc	140.5	6 h
¹¹¹ In	171 245	2 d
¹³¹ T	364 391	8 d
²² Na, ¹⁸ F, ¹¹ C, ¹⁵ O	PE : 2x511	1.8 h - 3y

Bonded to a bio-molecule
Radio-tracer

Interaction of photons with matter

- Photons unlike charged particles with continuous ionization exhibit "one-off" interactions
 - Primary photon lost in this process
 - Resulting charged particles ionize and can be detected
- Photon flux is attenuated

 $\phi(x) = \phi_0 e^{-\mu x}$

 μ - linear attenuation coefficient [cm⁻¹] $\lambda = 1/\mu$ - attenuation length, mean free path

Attenuation scales with density
 µ/ρ - mass attenuation coefficient
 [cm²/g]
 px - surface density, mass thickness
 [g/cm²]

Mass attenuation coefficients

Linked to cross section by

- For interesting photon energies two physical processes prevail
 - Photoelectric effect
 - Compton scattering
- High vs. low Z comparison
 - σ higher by up to 3 orders of magnitude at low Ey for high-Z
 - Features in spectrum for high-Z

Complete set of tables for μ available at:

http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html

Photoelectric effect

- Photon hits bound electron in atom
 - Electron takes Ey reduced by its binding energy
 - Momentum taken up by atom
 - Characteristic X-rays emitted
 - Tightly bound (K-shell) electrons preferred
 - Cross section rises by orders of magnitude upon crossing threshold – K-edge
- Above K-edge

MADEIRA Training, November 18-21, 2008

Compton scattering

Photon elastic scattering on (quasi)-free electron
 Photon scattered and reduced energy

 $\sigma_{c} \propto Z/E \propto \rho_{el}/E$

• Θ - photon scattering angle • $\mu = E_{\gamma i} / m_e c^2$ • $\epsilon = E_e / E_{\gamma i}$

Compton scattering (cont.)

- Electron energy spectrum
 - Maximum Ey transfer at Compton edge - backward scattering

- Small transfers for low Ey
- Photons continue with ~same energy change direction
 - ⊗ Bad for photon detection !
 - ⊖ Even worse for imaging ...
- Photoelectric vs. Compton

Use high Z for detectors
Use lower Ey for imaging

Statistics primer

• Nindependent measurements of same quantity:

 $x_1, x_2, x_3, \dots, x_i, \dots, x_N$

Frequency distribution function (discrete x)

$$F(x) = \frac{N(x_i = x)}{N}; \quad \sum_{x=0}^{\infty} F(x) = 1$$

Standard deviation from true mean

$$\sigma^{2} = \overline{(x_{i} - \bar{x})^{2}} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2} = \sum_{x=0}^{\infty} (x - \bar{x})^{2} F(x) = \overline{x^{2}} - \overline{x^{2}}$$

Experimental mean and sample variance

MADEIRA Training, November 18-21, 2008

Questions asked

- How accurate is the measurement?
 - Best experimental estimate

$$\bar{x} = \bar{x}_e \quad \sigma^2 = \sigma_e^2 \quad \sigma_{\bar{x}}^2 = \sigma_N^2 / N$$

> For u derived of non-correlated measurements of x, y, z, ...

$$u = u(x, y, z, \ldots); \quad \sigma_u^2 = \left(\frac{\partial u}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial u}{\partial y}\right)^2 \sigma_y^2 + \left(\frac{\partial u}{\partial z}\right)^2 \sigma_z^2 + \ldots$$

- Is the equipment working properly ?
 - Confront measurements to (correct) model
- Is the underlying model correct ?
 - Confront model to (proper) measurements

Statistical model - Binomial

- Photon emission and detection a random (stochastic) process, like tossing a coin: Ntrials, x successes
- Counting experiment, integer (discrete) outcome
- p success probability, e.g. p = 0.5 for a (fair) coin
- x statistical variable, P(x) given by distribution:

Valid in general, but awkward to work with

Statistical model - Poisson

- Often individual success probabilities p are small with a large number of trials N
- Binomial $(N, p) \rightarrow \text{Poisson}(Np)$

• Possible to estimate both the mean and error from a single counting measurement ! $\overline{x = x \pm \sqrt{x}}$

- If mean value of Poisson distribution ≥ 20
- Poisson \rightarrow Gaussian

 \overline{x} still the only parameter !

Combination of measurements, due to Central Limit Theorem, leads to Gaussian distribution

Two parameters (mean, width) x can be a continuous variable

- Confront measurement F(x) to model P(x)
 - Ignorant's attitude: Compare by eye?
 - Scientific approach: Conduct a statistical test!
 - Most used: χ^2 test
 - Test yields probability P experiment matches model
 - If probability too low (e.g. P < 0.05)
 - a) Question measurement if believe in model?
 - b) Question model if believe in experiment?
 - c) Accept lower probability ?
 - d) Take different model?
 - e) Repeat measurement ?
 - f) Conduct other tests ?
 - z) Compare by eye ??
- Eternal frustration of statistics
 B False positives vs. False negatives

Generic radiation detector

- For any γ-ray detection the following sequence applies
 - y interacts in detector material resulting in an energetic electron (and eventual additional photons)
 - Electron ionizes detector material, creating additional electron-ion (or electron-hole) pairs - very fast process
 - Applied electric field in detector separates charges which drift towards collecting electrodes
 - Alternative: charges recombine at specific centers producing (visible) light- scintillation
 - Moving charges induce current on electrodes according to Shockley-Ramo theorem collection time from ns to ms

- Sometimes E is strong enough to provoke further ionization charge multiplication
- Current signal gets processed and analyzed in front-end and read-out electronics

What do we want to measure?

- Signal from detector time-dependant current pulse
 - No charge trapping and no amplification \Rightarrow collected charge $Q = \int i(t)dt = Q_{ionization} \propto E_e$
 - $E_e \sim E_\gamma$ in photopeak
 - Handle on Compton scattering !
 - Q build-up during charge collection time
 - $t_{coll} \sim d^2/(\mu V)$ can be some ns for thin semiconductor detectors
 - Fast timing narrow coincidences reject random background in PET!
- Good reasons to count individual pulses, extracting Q and t
- Still for dosimetry applications average current measurement can be sufficient (~ dose-rate)

Signal (pulse) processing

Basic elements of a pulse-processing chain

Expanded view of preamplifier and shaper

MADEIRA Training, November 18-21, 2008

- Possible simple configuration
 - *R* amplifier input resistance
 - C-sum of C_{det} , C_{cable} and C_{amp}
 - *RC* << *t_{coll}*: current sensitive
 - RC >> t_{coll}: charge sensitive
 - t_{rise}~ t_{coll}

•
$$t_{fall} \sim RC$$

- C is dominated by C_{det}, which can exhibit variations
- Useful configuration feedback integrator
 - $A \times C_f \gg C_{det}$: *V* independent of C_{det}
 - *R_f* needed for restoration to base-line, preventing pile-up

Detector

i(t)

V(t)

V(t)

V(t)

(a)

 $= \int i(t) dt$

Case 1: $RC \ll t_c$ V(t) = Ri(t)

Case 2: RC >> t

- Intrinsic resolution
- Statistical noise in charge generation by radiation
 - Expect a stochastic process with variance

- Lower average ionization energy (e.g. Si or Ge) gives better resolution
- Process not truly stochastic; all E lost must sum up to E_{ν} ! Corrected by Fano factor F

- F depends on E sharing between competing processes (ionization, phonons)
- Measured F ~ 0.1 in Si & Ge; resolution improved by factor 3 !

- ➢ Full-Width at Half Maximum → universally accepted FOM for resolution
- For Gaussian distribution

 $FWHM = 2\sigma\sqrt{2\ln 2} = 2.355\sigma$

• So the energy resolution *R* is

$$R = \frac{FWHM}{E_{\gamma}} = 2.355 \sqrt{\frac{F}{N_e}} = -2.355 \sqrt{\frac{FE_{ion}}{E_{\gamma}}}$$

Noise considerations

- Intrinsic resolution deteriorates with additional noise sources in read-out
- The signal and its noise; two sources

- 🖎 Fluctuations in velocity thermal noise
- Fluctuation in charge
 - ✓ Intrinsic fluctuations
 - Fluctuations in underlying leakage current if injected (or generated) discretely - Shot noise
- Noise characterized by noise power spectrum dP/dv
- Thermal and Shot noise have white spectra: dP/dv = K
- The signal gets conditioned by the preamplifier
- For charge sensitive pre-amp
 - Thermal noise \rightarrow equivalent voltage noise source
 - Shot noise → equivalent current noise source
- Pre-amp (and other parts of the system) add their own noise sources
 - Sources (mostly) uncorrelated → noise contributions add in quadrature

MADEIRA Training, November 18-21, 2008

- White spectra noise at all frequencies
- Signal frequencies around $1/t_{coll}$ only
- Filter out low and high frequencies to improve S/N
- Task of the shaper
 - Also shape signal so amplitude and time can be determined
- Basic functionality: CR and RC filters

Shaper (cont.)

- Several CR and RC filters in sequence, decoupled by op-amps: CR-RC, CR-RCⁿ, ...
- Response of CR-RCⁿ to step function V_{O_1}

- For equal peaking time
 - CR-RC fastest rise-time best for timing
 - CR-RCⁿ with n > 4 symmetric faster return to baseline high rates

Noise of detection system

- Shaper with peaking time reduces bandwidth
- Noise of detector & read-out turned into equivalent charge fluctuations at input – equivalent noise charge ENC
- FOM is signal to noise S/N = Q/ENC
- For charge sensitive pre-amp
 - Thermal (voltage) noise
 - Shot (current) noise
- No universal recipe
- > Optimize r case-by-case

Paralyzable

- Detection system can be inactive for dead-time *r* for various reasons
 - Detector bias recharge (GM)
 - ADC conversion time
- Two models of interference
 - Signals during dead-time pass by unnoticed
 - Non-paralyzable model
 - Signals during dead-time lost & induce own dead-time
 - Paralyzable model
- Relation between observed pulse rate m and true rate n
 - Non-paralyzable model
 - Paralyzable model
 - Solve for n iteratively
 - Two ambiguous solutions

 $m = n \times e$

× T >

<T->

Events in detector

Dead

Live

Dead

Radiation Detection

Time

Anger Camera - Mechanical Collimation

- SPECT imager Anger camera
- Need collimator to reconstruct photon direction

Typical collimator properties

Parallel plate collimators	Efficiency	Resolution at 10 cm
High sensitivity low energy	5.7 × 10 ⁻⁴	13.2 mm
High resolution low energy	1.8 × 10 ⁻⁴	7.4 mm
High sensitivity medium energy	1.1 × 10 ⁻⁴	15.9 mm
High resolution medium energy	4.0 × 10 ⁻⁵	10.5 mm

Anger 1957Siemens 2000Low efficiency, coupled to resolution ($\epsilon.\sigma^2 \sim const.$), worse @ higher E_y, bulky $\[The standard medical imaging technique]$

Compton Camera - Electronic Collimation

 Replace mechanical collimator by active target (scatter detector) to Compton scatter the photon
 Detect scattered photon in position sensitive scintillator (Anger camera head w/o collimator)
 Reconstruct emitted photon from Compton kinematics

•Old idea

Todd, Nightingale, Evrett: Α Proposed γ-Camera, Nature 1974

•Compton telescopes standard instrument in γ -ray astronomy

Compton Camera - The Principle

- Measure position of scattering and absorption
- Measure electron (and photon) energy
- Each measurement defines a cone with angle *O* in space
- Many cones provide a 3-D image of the source distribution

Compton Camera - The Small Print

- Error on the source position results from
 - Position resolution
 - Error on cone axis
 - Place absorber far from scatter (solid angle, cost)
 - Place scatter close to source near field imaging
 - Electron energy resolution
 - Error on cone angle
 - Doppler broadening
 - Electron bound in atoms
 - $p_e \neq 0$, broadening in θ

Elected.

Electron

Modified Photo

Radiation Detection

 $\Delta \theta = \frac{(1 + \mu(1 - \cos \theta))}{E \cdot \mu \sin \theta}$

Rationale of Si as Scatter Detector

- Silicon exhibits
 - Highest Compton/total x-section ratio
 - © Smallest Doppler broadening
 - © Excellent energy and position resolution
 - Mature technology
 - © Simple operation (hospital !)
 - ② Reasonable cost
 - ⊗ Low efficiency ~ 0.2/cm
 - \succ Thick detectors 0.3 \rightarrow ~1 mm –
 - Stack for higher efficiency

Energy Resolution

- Statistical
 - $\Delta E_{FWHM} = 2.35 \checkmark FN$
 - 140/511 keV: $\Delta E_{FWHM} \sim 55/200 e \sim 200/720 eV$
- Electronics
 - Voltage noise $\propto (C_{int}+C_{det})/\sqrt{\tau_p}$
 - Current noise $\propto \int (I_{det}\tau_p)$

Even in optimized systems electronics noise dominates T 1 keV FWHM (σ_{noise} = 120 e) a challenge

Silicon Sensors

- 1 mm thick p⁺-n pad sensors
- Pad dimensions 1.4 mm × 1.4 mm
- Routed to bond pads at detector edge through double metal
- Full depletion ~ 150 V for 1 mm
- Very low leakage current ~ 50 pA/pad
- Produced by SINTEF, Norway
- 512-pad (16x32) detectors used for this prototype
- Active area 22.4 mm x 44.8 mm

VATAGP3 Read-Out Chip

- 128-channel self-triggering ASIC produced by IDE AS, Norway
 - Charge-sensitive pre-amplifier
 - TA channel: fast-shaper (150 ns) & discriminator for self-triggering
 - Trim-DAC's for threshold alignment
 - VA channel: low-noise slow shaper (0.5-5 μ s) for energy measurement
 - Read-out of up to 16 daisy-chained chips
 - Serial: all channels
 - Sparse: channel triggering with address
 - Sparse ± specified number of neighbouring channels
 - 2 multiplexed analogue outputs (up, down)
 - Calibration circuitry for diagnostics

Tc-99m (140.5 keV)

- Si detector with four VATAGP3 mounted on 4-layer PCB hybrid
- Measured noise figure 170 e_0 , corresponding to ΔE of 1.4 keV
- VA shaping time of 3 μ s used, but noise still dominated by voltage noise
- Noise correlated to capacitance of double-layer routing lines on silicon