SDC - 93 - 573
UM - HE - 93 - 29

UNIDAQ

Version 2.3

Software for UNIX-Based Data Acquisition

User’s Guide
Editor: R. Ball

September 26, 1995

Unwversity of Michigan
National Laboratory for High Energy Physics (KEK)
Tokyo Institute of Technology
Unwversity of Minnesota

>k ok >k 3k 3k 3k 3k 2k Sk >k 5k 3k 3k 3k >k Sk >k 5k ok 3k 3k >k >k 5k >k >k 3k >k ok k 3k sk ok %k ok 3k >k 3k 3k >k 3k 3k 3k >k 3k >k ok %k 3k >k 5k %k 5k >k 5k >k 5k >k 5k >k 5k >k 5k >k >k >k >k >k %k >k %k k

Copyright (c) 1993

The Regents of The University of Michigan
Universities Research Association, Inc.
A1l Rights Reserved

Authors:
R. Ball, UofMich
Y. Takeuchi, T.I.T.
M. Nomachi, KEK
C. Timmermans, UofMinn

¥ OX X X X X X X X X ¥ ¥
¥ OX X X X X X X X X ¥ ¥

ok 3k ok ok ok ok ok ok ok ok ok 3k ok ok ok >k ok ok ok sk >k ok ok >k ok ok ok %k ok ok ok sk ok ok ok ok ok ok >k ok ok >k >k ok ok sk >k ok ok >k ok ok ok %k ok sk %k >k ok ok ok 3k ok ok >k >k 5k ok >k %k ok k

These programs are free software; you can redistribute them and/or modify them under the
terms of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Authors may be reached as follows:
bob.ball@umich.edu
timmer@mnhepl.hep.umn.edu
nomachi@kekvax.kek.jp

1. INTRODUCTION

This document is part of an overview of the UNIDAQ Data Acquisition System, Version
2.3 . The full suite of documents includes an Installation Guide, a Technical Manual, and
a User’s Guide (this document). All three are available in postscript format in the doc
sub-directory of the distributed software. The user is also referred to Fermilab PN457, the
Murmur User’s Guide (pn457.ps.Z in the directory containing the distribution tar files.)

The overall system software consists of a generic template structure, a buffer manager,
and a set of processes such as a collector, analyzer, recorder, and runcontrol, which were
developed using the template and the buffer manager. The processes running in UNIDAQ
interact with each other by means of three entities: command messages, event data, and
process data. The interprocess message passing is handled by the template, the circulation
of event data is controlled by the buffer manager (NOVA), and the process data are handled
by the Status Path. The interaction of the processes is illustrated in Figure 1.

Two of the criteria considered in the design of the UNIDAQ Data Acquisition System
are extendibility and scalability. The template is extendible by providing a generic underly-
ing structure on which the processes are built. The processes built on top of the template
inherit all the characteristics provided by this generic structure, and if required, additional
process-specific features can be added to a particular process without having to modify the
kernel template. This facilitates the addition of new processes to the system. Similarly,
both the template and the buffer manager are scalable up to distributed environments and
higher event rates, and allow on-the-fly addition and deletion of processes.

In this report we describe how the average user can take the installed software, start up
the system (assuming it has already been configured for the hardware in use) and analyze
and record data. Later sections detail how the software can be configured for the particular
set of modules the user would like to read out.

1.1 Wuat 1s UNIDAQ?

UNIDAQ is a reasonably portable, modular, UNIX based, data acquisition system. Its
implementation for a given user can range from a very simple, read data / write data two
process system, all the way up to a system which runs on multiple processors with multiple
data sources and a variety of analysis and display activities.

UNIDAQ is also ported to the real-time VXWORKS and LynxOS operating systems,
though not all processes are available on these systems and there are some small differences
in starting processes as will be pointed out later.

Data in the form of events is passed using the buffer manager system NOVA developed
at KEK and TIT.

Commands in the form of messages are passed using the template model developed at

the SSCL.

Event Collector

Source

EEEE——

— =

——— —
—_

——

The overall system status can be monitored and controlled using the Status Path and

7

=log file

User
Interface

AN
Buffer N\ Other

Manager Processes

Logging messages

Commands
Status Path interactions
Interactions to the NOVA

Flow of the Event Buffer

Figure 1. Interaction of the processes.

control processes developed at the University of Michigan.

A corollary of the Status Path is critical variables. Critical variables are those system
and user level variables which are thought to be important enough to retain between

invocations of a process, whether that process stops normally or dies abnormally.

The user can choose those processes she/he needs to perform a task and run only those.

Others can be added or dropped on the fly as they are needed or no longer required.

The following chapters will give a brief introduction (and sometimes not so brief) to

all these pieces. Further details can be found in the accompanying Technical Guide for

those who want or need such information.

1.2 SUGGESTED READING

Suggested minimal reading in this User’s Guide includes Chapters 1, 2 and 7, and those
sections of Chapter 3 dealing with the processes you intend to run. If you intend using
multiple processors or VXWORKS you should also read Chapter 6. Chapter 5 contains a
detailed sample session using UNIDAQ which can be very instructive.

1.3 ACKNOWLEDGEMENTS

The editor would like to thank all those who contributed text, figures and ideas to this
document. These persons include, but are not limited to, R.Ball, C.Timmermans, A.Fry,
D.Brenner, C.Erbas, M.Nomachi and B.Roe. E-mail help can be obtained on this package
from:

MICH::BALL bob.ball@umich.edu
MICH:: TIMMER timmer@mnhepl.hep.umn.edu
KEKVAX::NOMACHI nomachi@kekvax.kek.jp

2. RUNNING UNIDAQ V2.3

With the software installed on your machine as instructed in the Installation Guide
you can now begin to play. This chapter explains how to set up the environment needed
to run the software, how to start it all, how to stop it all, and how to actually take data
using the various processes.

2.1 SETTING UP

The UNIDAQ software makes use of a number of environmental variables (c-shell) dur-
ing its operation on UNIX platforms. A file in the UNIDAQ directory,
$USERUNIDAQ/conf/setup.csh, contains the majority of these variables. A few others
are needed if murmur is running, but use of these is transparent to the casual user. To set
these variables it is recommended that your .cshre file in your home directory be modified
to access this file whenever you log in. The .cshre file was chosen over the .login file because
the .login is not really used in the HP VUE environment. Add to the .cshre file the line
(this file is actually a link to the file in the conf directory)

source $USERUNIDAQ/setup.csh

Of course, the variable USERUNIDAQ may not be set up yet, so you should ask the person
who installed the software which directory it corresponds to, and substitute that directory
for §USERUNIDAQ in the line you add. Typically this directory will be something like
/tr2/UNIDAQ/v2.3/user UNIDAQ. See the Installation Guide if you wish to make your
own, mostly links copy of the UNIDAQ directories. In this case SUSERUNIDAQ will
point to the directory you choose. It is also possible to just create your own local copies of
the user directories and work within them using the “user_tree” command in the $TOP-
UNIDAQ/bin directory. Again, refer to the Installation Guide for these directions.

As a result of sourcing setup.csh, a group of environmental variables will be set,
your PATH variable will be modified to search the $USERUNIDAQ/bin and $TOP-

UNIDAQ/bin directories for the UNIDAQ user and system processes, and the MANPATH
variable will be modified to point to some man page entries for the UNIDA(Q system.

With distributed UNIDAQ), the possibility exists to run processes on several machines.
To enable this, you must have a “.netrc” file in your home directory, listing the machines
and accounts you will use. See the Technical Guide for details on the format of this file.
The machines themselves are listed in a separate file, SUSERUNIDAQ/conf/nodefile, and
a startup file (described later and in the Technical Guide) should be prepared for each of
these machines.

2.1 a. Configuring

Some UNIDAQ processes and files can and should be configured according to the needs
of the experiment. The uni_config tool provides an easy way of doing so. A description
of this tool can be found in the chapter “ADDITIONAL TOOLS”. Furthermore, you are
referred to the chapters in this manual and in the Technical Guide on the processes you
want to modify.

2.2 STARTING THE SOFTWARE

The simplest way available to start all the software on UNIX machines, once you have
sourced the setup.csh file, is to simply type the command

Start
at the shell prompt. This executable image, which resides in the $TOPUNIDAQ/bin di-

rectory, will start the user and control processes on all processors associated with UNIDAQ
and listed in the nodefile file (located in $USERUNIDAQ/conf). This is accomplished
by finding shell scripts in this same directory called Start_node, where node corresponds
exactly to the machine name as it is listed in the nodefile file. The processes named in

the script will be started on the corresponding node. The uni_config tool can be used to
edit all these files.

On a combined UNIX-VXWORKS system, the Start-command will not work correctly
(although it will not crash). Processes will only start on the UNIX machines, while nothing
happens on VXWORKS. The Start-scripts have to be executed manually on VXWORKS
(see below), or can be executed at boot-time of the VXWORKS systems.

The processes on a single UNIX node can be started by logging into that node and
typing the command

Start_local
In a single processor configuration, typing “Start_local” works as well as typing “Start” to
get the processes going. See the Technical Guide for more details on this procedure.

On a VXWORKS node one has to type <Start_node, where “node” describes the full
node.network address of the VXWORKS machine. Start_local does not work here.

The user processes consist of collector, analyzer, recorder, dataview and UNIlview,
respectively the processes which read out data, manipulate/make histograms from the
data, write the data to media, display selected event variables on your workstation, and
display a snapshot of the UNIDAQ machine/process tree. Actually, enalyzer and UNIview
are not started because they are interactive in nature. Furthermore analyzer is actually
a suite of several different programs, similar in nature and functionality; these will be
explained in later sections. One further user process called receiver exists to collect NOVA
events across the network and place them in a local NOVA buffer (see Chapter 6, section 1
for more on network NOVA). Of these user processes only collector, recorder and receiver

are available on VXWORKS.

The control (or system) processes consist of XPC, zpc_checker, logbook, and runcontrol.
One further control process, the operator process, is not automatically started. This
process runs interactively with the user to control the operations of the system as a whole.
None of these control processes are available on VXWORKS.

If TCL/TK is used, operator, dataview and uni_config are implemented as tecl-scripts.
Operator and dataview are based upon UNIwish, a “wish”-shell modified for UNIDAQ), as

described below. One additional process, UNIview, exists only as a tcl-script.

Finally, to enable messaging across the network a control process called msg_server is
started. At a minimum one XPC (on UNIX machines) and one msg_server (on both UNIX
and VXWORKS machines) should be started on each node listed in the SUSERUNIDAQ/-
conf/nodefile file.

2.2 a. Command line options in starting processes

Three command line options are available when starting processes which use the tem-
plate.

1. -m machine — use this option to specify the process should get its NOVA buffers
from machine machine instead of from the local processor.

2. -n name — use this option to specify the name of the process as registered in the
Common Table and as seen by other template-using processes. Normally the process
name is just the name of the program image.

3. -p prio — specify the priority at which this process will receive NOVA buffers. The
allowable range i1s 1-100, and will be adjusted appropriately if the value supplied is
out of this range. Higher priorities receive buffers earlier in the hand-down chain.
Values above 70 ensure buffers will all be received, whereas lower values may mean
missed buffers in a busy system.

There are differences in starting processes on a UNIX machine and on VXWORKS.
On UNIX one can type

process_name options & ,
or alternatively

nohup process_name options & .

On VXWORKS one first has to load the file using
ld <process_name |,

before starting the process by
sp process_name, “optl”, “opt2”, ...

For example starting a collector process with a different name would look like:

sp collector, “-n”, “new_name”.

2.3 STOPPING THE SOFTWARE

The simplest way available to stop all the software on UNIX machines once you have
sourced the setup.csh file is to simply type the command

Reset

at the shell prompt. This executable image, which resides in the $TOPUNIDAQ/bin
directory, will stop all processes on all UNIX processors associated with the UNIDAQ
system, and clean up the shared memory and message queue entries which were allocated.
To stop only those processes on a single UNIX processor, log into that processor and type
the command

Reset_local

“Reset_local” completely clears the local processor of processes, shared memory and mes-
sage queue entries without adversely impacting other processors in the system. Both
“Reset” and “Reset_local” prompt the user for confirmation. In a single processor config-
uration, “Reset_local” works as well as “Reset”.

On VXWORKS machines these “Reset” tools are unavailable; each process has to
be stopped manually using the ask tool. Another way of stopping processes is using the

UNIX/VXWORKS kill command.

2.4 INTERACTING WITH THE SOFTWARE

Once you have started all the processes as above, the system will be sitting in an idle
state waiting to be told what to do. To get it moving there are two possibilities. Either
one can run the operator process, or the ask (rask) tool can be used to send commands
directly to the various processes. Note that from a VXWORKS platform, only the ask
tool can be used.

The operator program uses X-based displays and must be run such that it can display
at a workstation. The look and feel of this process depends on whether TCL/TK is used
or not. The information given to the user and the possibilities of sending commands are
the same in both cases. To invoke it enter at the shell prompt the command

operator.

Storage

Recorder: recorder
Event sink

Run Parameters Run Control
Collector: collector

Runcontrol: runco
Run Number [| Max. Events Startcold | Start warm |

Eventsource [| EventNumber | | Continue HSuspend |
StartTime [| EndTime [| Stop |Initialize |

e

NOT privileged

Run Control Commands

command>>

Figure 2. The Four Default Operator Process Windows.

UNIDAQ Operator process Display
UNIDAQ PORTABLE DATA ACQUISITION SYSTEM

(General User Interface

ser name: bhall Host name: mhpbbZ Host type: HP-UX

Run and Storage parameters

erin Cold Begin Warm |

Idle

Runnr : o] M o vente: Continue Suspend
Ewvent source: [BEAGRES Event Humher: © 1 End 1

Start time:

End Time:

PRIVILEGED

Pun control commands ‘

command >3 | l

Figure 3. The Operator Process Window Under TCL/TK.

You could run this in the background as well via the command “operator &”.

In the non-TCL/TK version of operator four windows will appear on your monitor.
Drag these apart if they overlap each other so that you can see what is going on with
them. These four windows are shown in figure 2. One window is a command-line input
window, one is used to specify the directory in which recorder should record its outputfile,
one is used to specify the data source (currently CAMAC or PSEUDO) and doubles as a
statistical display, and one is the primary control panel with buttons for various operations.
Placing the cursor within a button and clicking the left mouse button is the method of
selection. Runs are begun and ended using this “point and click” method.

The TCL/TK version of operator will only open 1 window on your screen as shown
in figure 3. This single window contains the same information as described above for the
non-TCL/TK version of operator. Furthermore, it has the same functionality.

Please see the operator process description below for further details on using it.

As the software is distributed the collector process will not correspond to the CA-
MAC/VME hardware which you wish to read out. You will have to modify the source
code of collector to properly correspond for you. Chapter 5 in this manual and a chapter
in the Technical Guide give examples of how to modify the program code and rebuild it to
your needs. After this rebuild, the software can be completely restarted as above, or just
collector restarted, and data taking can commence.

2.5 STOPPING SINGLE PROCESSES

Excepting only the buffer manager (NOVA) all the processes recognize the EXIT com-
mand as this is built into the message template. Because of this processes usually do
not have to be killed via Unix/VXWORKS “kill” command, which is messy, but can be
cleanly stopped using the ask (rask) tool. Given the name of the process (available by
typing status at the shell prompt) one can simply issue the command

ask process_name EXIT

to the shell. The process will stop, cleaning up all the UNIDAQ common tables in the
process. On UNIX machines, it can be re-started later using the ask command, requesting
the XPC to take care of the task. See the discussion of the XPC process below for details
of this. On VXWORKS the standard “sp” command should be used.

2.6 LoOOKING AT EVENT DATA

When the data flow is started (e.g., using operator) several possibilities exist to look
at the event data.

The analyzer processes can be used to create online histograms. Up to three analyzer
versions are available, depending on which platform is in use. Ana_d and ana_nd are linked
to include PAW. The ana_gl program creates histograms in shared memory and one has
to run PAW separately to display the histograms.

The dataview process allows one to show current values of variables on the screen.
These values are automatically updated as the dataflow progresses.

An alternative way of looking at event data is provided by the UNIdump tool. This
tool, which is described in chapter 7, provides an easy way to display the data on an event
by event basis.

3. SYSTEM PROCESS DESCRIPTIONS

In Chapter 6 of the Technical Guide we describe the template. The template provides
the generic structure on which the processes can be built. UNIDAQ 2.3 contains ten such
processes. Five of these processes (collector, recorder, receiver, analyzer, and dataview)
are aimed to deal with events. Five processes (runcontrol, logbook, operator, XPC and
zpc_checker) are targeted to control the operation of the system. As mentioned before,
some processes can be programmed (operator, dataview, and uni_config) as tcl-scripts.
This required the use of a modified TCL/TK “wish”-shell called UNIwish. An additional
process called UNIview exists only as a tcl-script. One further process, the msg_server,
enables communications between machines. In this chapter, we describe these processes,

and the UNIwish shell.

Note that the User-level Commands and Variables are “values” which the process can
understand in messages that it receives. For example, the collector process, described next,
understands the command RESUME. Using the command line message sender program
ask then one can send the following command to collector:

ask collector RESUME [optional message string]

The collector process, when it receives this message, will take the action specified below.
A program level subroutine, Send Message, also exists to send the same commands.

3.1 COLLECTOR PROCESS

Collector 1s the process which interacts with the event source. It waits until an event
occurs, and then accesses the event source and reads the channels. The event data is then
stored into a buffer, and the buffer address is given to the next process in the process
chain.

If collector gets stuck for a long period of time while processing an event, or during
setup, two ways are provided to break it out of this state. The first is to code the program
such that it checks the “interrupt_flag” global variable for a non-zero value, and return
if such is found (see the description of the INTERRUPT command of the XPC process).
The second is to send an interrupt to the process via the UNIX/VXWORKS command
“kill -INT <pid>" which will immediately return the process to the main template loop;
this is different than the default behavior described in Chapter 9 of the Technical Guide.

In UNIDAQ 2.3, the collector provides the following user-level commands and variables:

10

Collector User-level Commands:

BEGIN, RESUME, PAUSE, END, FLUSH, MSET, and EXIT.

Collector User-level Variables:

runnr, maxnevents, eventnr, eventsource, runstate, starttime, endtime, runtype,

mode, flush_all.

Collector Critical variables

All user-level variables, with the exception of runstate, are critical.

3.1 a. User-Level Commands
The descriptions of the collector user-level commands are given below:

BEGIN <runnr> <comment>: This command is used to start a run. Here, <runnr>
is used as the identification number of the run, and is stored into the collector user-lev-
el variable of that name. <comment> is a string which is packed into the Begin Run
record. Whenever the collector receives a BEGIN command it initializes the event source
by sending hardware related signals, and generates a Begin_Run record. However, the data
taking process does not start with the BEGIN command. If <runnr> is not supplied, then
the current value of the user-level variable is used. Zero is a legal value for <runnr>. If
a <comment> is supplied, then the <runnr> must also be supplied; no check is made to
enforce this. The default comment is “No comment.”.

RESUME <comment>: This command is used to resume a run. The actual data
taking process starts with this command. After receiving the RESUME command, the
collector enables the interrupts coming from the event source, generates a Resume Run
record, and waits for an event. The default comment is “No comment.”.

PAUSE <comment>: This command is used to pause a run. Whenever the collector
receives a PAUSE command, it disables the interrupts coming from the event source, and
generates a Pause Run record. The default comment is “No comment.”.

END <comment>: This command is used to terminate a run. After receiving an
END command, the collector resets the event_source, and generates an End_Run record.
The default comment is “No comment.”.

FLUSH: This command forces the current NOVA buffer to be flushed whether it is
full of events or not, thus passing it to the next UNIDAQ process.

MSET <war!=valuel> ... <varN=valueN>: This command allows multiple variables
to be set in a single command. Otherwise it acts in all respects the same as the system

command SET.

EXIT: This command calls the exit handler, cleans up the message queues and
semaphores used by the collector, updates the common status table and then exits.

3.1 b. User-Level Variables

The descriptions of the collector user-level variables are given below:

11

<runnr>: Integer. Initial value is zero. This is the run number of the current run. It
may be changed between runs, but will take effect only at the beginning of the next run.

<maznevents>: Integer. Initial value is zero. This is the maximum number of events
which a run may have before runcontrol (if it is being used) will automatically end it.

<eventnr>: Integer. Initial value is zero. This 1s the current event number within a
run. It resets to zero at the beginning of a run.

<eventsource>: String. Default value is “CAMA?”. This is the source of data events.
At this time, recognized values are “CAMAC” and “PSEUDQO” for events out of CAMAC
and a random number generator. Other values are allowed, but no specific code exists for
them.

<runstate>: Integer. Default value is END_STATE. This value reflects the state of
data collection in an obvious fashion. Other values are RESUME _STATE, BEGIN_STATE,
and PAUSE_STATE. These four respectively take the values 0, 3, 1, and 2. This variable
is used to assure an orderly transition between the various data collection states of the
collector, so that buffers are written to tape in the correct order.

<starttime>: Integer. Default value is zero. The time at which a run begins.
<endtime>: Integer. Default value is zero. The time at which a run ends.

<runtype>: Integer. Default value is zero. This variable is free for use by the pro-
grammer. It is intended to indicate the type of run, eg, pedestal, calibration, etc.

<mode>: Integer. Default value is zero. This variable is free for use by the program-
mer. It is intended to indicate some particular setting within a <runtype>, for example,
for a calibration run it could indicate charge injection, pulse, etc.

<flush_all>: Integer. Default value is zero. If this variable is non-zero, then all event
buffers are flushed containing only one event. This is useful when testing, but inefficient
during normal data taking.

3.2 ANALYZER PROCESS

At this time there are three versions of the analyzer process. As many versions as
possible are implemented on each platform, but all of them are not always available,
depending on the limitations of the hardware and software. The version described next, the
dynamically linked analyzer called ana_d, is available on the HP, SGI and SUN platforms.
A non-dynamically linked version of this same program (ana_nd) is available on the same
three platforms in addition to the DECstation. The third version (ana_gl) uses a global
section to store HBOOK histograms, and is available only on the DECstation and SUN
platforms. This version is run in association with the standard PAW program for viewing
the histograms. Off-line versions of the first two (ana_d_off and ana_nd_off), which run
independently of the other UNIDAQ processes, are available on the same platforms as
their on-line cousins. No analyzer process is available on VXWORKS or LynxOS.

12

3.2 a. The Dynamic Analyzer

Ana_d is used for on-line histogramming of the event data. Ana_d provides all the
features of PAW, so the user can use the ana_d as a PAW screen. In fact, you are auto-
matically connected to a “paw>" prompt in this enalyzer version. Further, it allows the
user to define his/her own histograms using PAW and dynamically link those histograms
to the system. The user defines his/her own analysis procedures using FORTRAN or C.
These procedures can then be compiled “on-the-fly” and dynamically bound to an execut-
ing ana_d process. After the histograms are linked to the system, the incoming event data
is used to fill the histograms.

As with the collector, the ana_d can be sent back to its main template loop by the
UNIX command “kill -INT pid”. This is useful in case the user has set up a bad/looping
routine.

In UNIDAQ 2.3, the ana_d provides the following user-level commands and variables:
Ana_d User-level Commands:

LINK, UNLINK, ADD, DELETE, LIST, DISPLAY, PAW, PAWC, BEGIN, END,
COMPROC, HLIMAP, QUIT, and EXIT.

Ana_d User-level Variables:

runstate, run_number.

Ana_d Critical Variables:

None.

User-Level Commands

The descriptions of the ana_d user-level commands are given below:

LINK <filenamel> | <proc_namel ...>] [<file_name2> [<proc_namel ..>]] ...:
The LINK command allows the user to compile and dynamically bind a file or files
<file_nameN> to the ana_d. If the <proc_nameN> arguments are also supplied, then
the ADD command is also executed for the named procedures. This command is typi-
cally used to link a procedure filling a PAW histogram. More than one file can be linked to
the ana_d during one run. When the ana_d receives the LINK command, it first compiles
the file then links the object file. Finally it opens the linked file so that the new routines
are now a part of the running image.

UNLINK <file_name>: This command is used to unlink a file <file_name> which
has already been linked to the ana_d. Further, if the user wants to unlink all the linked
files, he/she can use the UNLINK ALL command.

ADD <file_nameN> <proc_name 1> ... <proc_name n>: Once a file <file_name> has
been successfully linked, the user specifies the procedures <proc_name 1> ... <proc_name
n> to be executed in that file. This is done by the ADD command. After the ana_d
receives the ADD command, it calls the procedures for every incoming event data. More
than one file, each with its own entry points, may be specified on a single ADD command.

13

DELETE <file_name> <proc_name 1> ... <proc_name n>: The DELETE command
allows the user to delete a procedure that has been added using the ADD command.
The delete command has three basic formats. The first format is used to delete one or
several procedures from the same file. To do this the user gives the file <file_name>
and the procedures <proc_name 1> ... <proc_.name n>. The second format DELETE
<file_.name> ALL can be used to delete all the procedures belonging to a file. The third
format DELETE ALL deletes all the procedures that have been added so far to the system.

LIST: List all files linked to the ana_d image and their ADDed procedure names.

DISPLAY <macromname> <time_interval>: This command is used to invoke a ku-
mac macro <macro_name> periodically. Generally, the macro is used to display the his-
tograms filled on the screen. The <time_interval> gives the length of the time interval
in seconds between two displays. If <time_interval> is not given, then the default time
interval of 10 seconds is used. Whenever a new DISPLAY command is issued the previ-
ous DISPLAY command is cancelled. If the user wants to cancel the previous DISPLAY
command, and does not want to issue a new macro, he/she can use the DISPLAY OFF
command.

PAW <paw_command>: Commands can be issued to the ana_d in two different ways:
from the user command line of the ana_d, or from another process. The ana_d user com-
mand line is directly connected to PAW, so the user can directly issue <paw_command>’s.
However, if another process wants to issue PAW commands to the ana_d, it should send
the command PAW <paw_command> via the “Send_Message” subroutine.

PAWC <paw_command>: The action is the same as for the PAW command except
this version is used internally by the ana_d and forces parent-child process synchronization
through the use of semaphores.

BEGIN <runnr>: This command may be used to start or override a normal run.
Every run should be started by a BEGIN command. Here, <runnr> is used as the iden-
tification number of the run. Whenever the ana_d receives a BEGIN command or a
BeginRun_Record, it executes the PAW command “ezec anbegin.kumac <runnr>". The
value of <runnr> is stored in the user-level variable run_number. If ana_d receives a Be-
ginRun Record from NOVA, the run number in that record is stored in <run_number>
and a BEGIN command is executed.

END: This command may be used to terminate a run. Whenever the ana_d re-
ceives an END command or an EndRun_Record, it executes the PAW command “ezec
anend.kumac”. The run number is reset after each END command.

COMPROC <filename> or Q< filename>: This command is used to execute a file
<filename> of ana_d or other template-related commands. <filename> may be in the
directory from which ana_d was started, or it could be an absolute pathname, or it could
begin with an environmental variable.

HLIMAP <global_name>: Make a global memory of histograms of name <global_-
name> so that other PAW images may access them. This is the same way in which the

ana_gl works. THIS COMMAND IS NOT WORKING AT THIS TIME.

14

EXIT or QUIT: Whenever the ana_d receives the EXIT command, it calls the exit
handler, cleans up the message queues and semaphores used by the ana_d, updates the
common status table and exits.

Next to these commands, ana_d has some history commands available, which resemble
the c-shell history commands.

!: Displays the list of issued commands, to the maximum history.
!!: Recalls the last issued command.
IN: Recalls command number N from the history.

!string: Recalls the most current command beginning with “string”.

User-Level Variables

The descriptions of the ana_d user-level variables are given below:

<runstate>: Integer. Default value is END_STATE. This variable reflects the type
of the last event buffer analyzed by the process. Other values are RESUME_STATE,
BEGIN_STATE, and PAUSE_STATE. These four respectively take the values 0, 3, 1,
and 2.

<run_number>: Integer. Default value is -1. This variable reflects the current run
number within UNIDAQ. The user has no particularly good use for it.

3.2 b. The Global Section Analyzer

The global section version of analyzer called ana_gl creates histograms in shared mem-
ory. Different PAW sessions can access this shared memory at the same time, which allows
multiple users to have access to the same data. Users need to create their own tailored
version of ana_gl as described in the UNIDAQ technical guide. The name of the shared
memory opened by this ana_gl can be retrieved from the programmer, or if you want to
browse through the code, this name is an argument in the hlimap() call (check the HBOOK
manual). The distributed version of this program uses the name TMC. When you know
the name you can start PAW. Within PAW you type:

paw> global shm_name

where shm name is the name of the shared memory opened by the ana_gl. Although you
cannot list the histograms and/or ntuples created in this shared memory you have access
to them. Again, the ana_gl programmer needs to tell you which histograms and ntuples
are created.

In UNIDAQ v2.3 ana_gl provides the following user-level commands and variables:
Ana_gl User-level Commands:

BEGIN, END, and EXIT.
Ana_gl User-level Variables:

runstate.

15

Ana_gl Critical Variables:

None.

User-Level Commands

The descriptions of the ana_gl user-level commands are given below:

BEGIN <runnr> : Whenever ana_gl receives this command it sets the run_number
internal and the runstate user-level variables. If ana_gl receives a BeginRun_Record from
NOVA | the run number in that record is stored in <run_number> and a BEGIN command
is executed.

END: This command ends the current run. Ana_gl sets the runstate.

EXIT: Ana_gl calls the exit handler, and terminates the connection with NOVA.

User-Level Variables

The descriptions of the ana_gl user-level variables are given below:

<runstate>: Integer. Default value is END_STATE. This variable reflects the type
of the last event buffer analyzed by the process. Other values are RESUME_STATE,
BEGIN_STATE, and PAUSE_STATE. These four respectively take the values 0, 3, 1,
and 2.

3.2 c. The Non-Dynamic Analyzer = The non-dynamic analyzer ana_nd works in a

fashion similar to the ana_d process except that analysis routines are linked in the more
traditional fashion rather than being dynamically linked into a standard image. Conse-
quently all User-level commands dealing with the dynamic link are unavailable. To assist
in preparing this program the ndmake tool was created. The user simply creates a file
called “NDMakefile” with one command line per analysis file to be linked into the ana_nd
image, then runs the ndmake command. Each line in the NDMakefile contains the name of
the Fortran or C file to be linked, and the name(s) of the routines to be called as each event
is processed. For example, a line may look like (this is from the distributed NDMakefile)

nd_dummy.f nd_dummy

which tells ndmake to compile and link into ana_nd the file nd_dummy.f, calling subroutine
nd_dummy for each event processed. For a complete help listing on ndmake, enter the
command “ndmake -h”.

In UNIDAQ 2.3, the ana_nd provides the following user-level commands and variables:
Ana nd User-level Commands:

DISPLAY, PAW, PAWC, BEGIN, END, COMPROC, HLIMAP, QUIT, and EXIT.
Ana nd User-level Variables:

runstate, run_number.

Ana_nd Critical Variables:

None.

16

User-Level Commands

The descriptions of the ana_nd user-level commands are the same as the corresponding
commands for ena_d above.

User-Level Variables

The descriptions of the ana_nd user-level variables are the same as the corresponding

variables for ana_d above.

3.2d. Off-line analyzer differences

The two off-line analyzer programs ana_d_off and ana_nd_off implement three addi-
tional User-level commands which are not available in the on-line versions.

ANALYZE <file_name>: Open (or continue with) the specified file_name, and ana-
lyze the events it contains.

PROCESS <file_name>: Synonymous with ANALYZE.
UCLOSE: Close the run file currently being analyzed.

3.3 RECORDER PROCESS

The recorder is responsible for writing data in a file. It is both event and command
driven, in the sense that the activity of the recorder can be controlled either by event data
or by command messages. If data is to be recorded to disk (eventsink set to “disk”) the
recorder opens a new file based on the run number either passed by the BEGIN command
or by a BeginRun record. The file name is obtained by concatinating an ‘r’ with the zero
padded run number followed by the extension ‘.dat’. If a file with the same name already
exists, then a number will be added to the end of the extension. For example, if the run
number is 7945, the recorder names the file as r0007945.dat. If this file already exists, then
the new file is called r0007945.dat2, and so on.

The user can set the path in which the file will be created by setting the dest_dir
variable. If dest_dir is empty, the file is written in the directory from which recorder was
started.

If eventsink is set to “tape”, then device should be set to the name of the tape device
to be opened and used. Event buffers will be packed end to end and written to tape in

60000 byte blocks.

If the user does not want to write data in a file or to a tape, the eventsink variable
should be set to “dummy”.

In UNIDAQ 2.3, the recorder provides the following user-level commands, and vari-
ables:

Recorder User-level Commands:

BEGIN, END, LOAD, UNLOAD, REWIND, NEW_DRIVE, END_TAPE, and
EXIT.

17

Recorder User-level Variables:

eventsink, runstate, dest_dir, and device.

Recorder Critical Variables:

eventsink, dest_dir, and device.

3.3 a. User-Level Commands
The descriptions of the recorder user-level commands are given below:

BEGIN <runnr>: This command may be used to start or override a run. Here,
<runnr> is used as the identification number of the run, and in the name of the output
file. If no <runnr> is given, then by default the recorder uses zero as the <run_number>.
Whenever the recorder receives a BEGIN command or a BeginRun_Record, it opens the
file for writing. If recorder receives a BeginRun_Record from NOVA, the run number in
that record is stored in <runnr> and a BEGIN command is executed.

END: This command may be used to terminate a run. Whenever the recorder receives
an END command or an EndRun_Record, it closes the file.

LOAD: Load the scsi tape indicated by variable dewvice.

UNLOAD: Unload the scsi tape indicated by variable dewvice.

REWIND: Rewind the scsi tape indicated by variable device.

NEW _DRIVE: Same as the LOAD command.

END_TAPE: Write a file mark on the scsi tape indicated by variable device.

EXIT: Whenever the recorder receives the EXIT command, it calls the exit handler,
cleans up the message queue used by the recorder, updates the common status table, closes
the file and exits.

3.3 b. User-Level Variables

The descriptions of the recorder user-level variables are given below:

<eventsink>: String. Initial value is an empty string. If the value of this string is
“dummy” (case independent) then no output event file is written. If the value is “disk”
then the output event file is opened relative to the value of <dest_dir>. If the value is
“tape” event data will be written to SCSI device <device>. Any other setting results in
data being written to disk.

<runstate>: Integer. Default value is END_STATE. This variable reflects the type
of the last event buffer seen by the process. Other values are RESUME_STATE, BE-
GIN_STATE, and PAUSE_STATE. These four respectively take the values 0, 3, 1, and 2.

<dest_dir>: String. Initial value is an empty string. If <eventsink> is not “dummy”
or “tape” then this string is used as the initial file/directory specification for the output
event file. For an empty string, the file is written in the directory from which recorder was
started.

<device>: String. Initial value is /dev/rst. If <eventsink> is “tape” then the event
data will be written to this SCSI device.

18

3.4 DATAVIEW PROCESS

The dataview process can be used, on UNIX workstations, to display current event
parameters on the screen. When TCL/TK is installed, running detaview actually means
running UNIwish with the dataview.tcl script. The functionality is similar to the no-

TCL/TK process described here.

When the dataview process starts, it opens an X-based window on the screen. This
window consists of a number of subwindows (to be configured before compiling the process)
which contain the current values of the event data.

How to configure this process is explained in the Technical Guide. This process is
completely event driven, and has no special user commands or variables.

Dataview User-level Commands:
None.

Dataview User-level Variables:

None.

Dataview Critical Variables:

None.

3.5 RECEIVER PROCESS

The recerver process can be used to get data-buffers across the network into a new
buffer manager. It requires that novend is running in addition to novad on the remote
machine and noved on the local machine. Receiver acts as a collector process on its local
machine, placing events into NOVA buffers for distribution.

Receiver User-level Commands:

EXIT.

Receiver User-level Variables:

None.

Receiver Critical Variables:

None.

3.5 a. User-Level Commands
The descriptions of the receiver user-level commands are given below:

EXIT: Whenever the receiver receives the EXIT command, it calls the exit handler,
cleans up the message queue used by itself, updates the Common Table, and exits.

19

3.6 RuN CONTROL PROCESS

The runcontrol process, only available on UNIX machines, can be viewed as a command
interpreter. It is the means of doing the (possibly) complicated list of actions associated
with such innocuous commands as “Begin_ Run”. The commands and their actions are
defined in an input file. The name of this input file is listed in the file ‘files.h’ located in
the $(TOPUNIDAQ)/src/control/runcontrol directory and that name is bound into the
runcontrol image. This default input-list is named ‘command.list’ and is located in the

$(USERUNIDAQ)/conf directory.

If a command is given (which is not a system, user level, or shell command [see below])
a child process is created. This child process reads the input file and tries to execute the
command. This command can consist of a set of operations that needs to be executed
either in parallel or sequentially. If parallel processes are required the child tries to fork
more child-processes. If it fails to do so the operations are performed sequentially.

Runcontrol is also able to execute shell commands. The command is to be preceded
by an @, eg, the message

Qcollector &

will start the collector process. Runcontrol does not fork a child process to do this, so time
consuming commands should be started in the background using this message form with
the &, as shown in the example.

Runcontrol’s functionality depends on the contents of the input file. The file consists
of a set of ‘macro’ definitions. These macros describe runcontrol’s reactions to given
commands. The ‘macro’ definition is an ordered list of subroutine calls. Modifications in
this file can be made without the need of modifying the runcontrol executable. If a new
subroutine needs to be written, then runcontrol needs to be recompiled and relinked. The
macro set distributed with UNIDAQ is sufficient to handle the standard processes and a
simple CAMAC hardware situation. See the sub-section below on “Using the operator
process” for a list of these macros. Also see the Technical Guide, Chapter 13, for more
details.

Runcontrol User-level Commands:
None.

Runcontrol User-level Variables:

runnr, runstate, wait_for, re_prompt, collector, recorder, and operator.

Runcontrol Critical Variables:

collector, recorder, and operator.

3.6 a. User Level Variables

<runnr>: Integer. Initial value is zero. Before starting a run, the runnr is read from
the collector process, after which the next runnumber is determined.

20

<runstate>: Integer. Initial value is zero. Its value is read from the collector process.

<wait_for>: Integer. Initial value is zero. This parameter is used for communication
between parent and child processes. It is used to flag if information from other processes
has arrived.

<re_prompt>: String. Initial value is an empty string. This parameter is used to store
the result of prompting a process for information.

<collector>: String. Initial value is “collector”. This variable determines which col-
lector process is in use.

<recorder>: String. Initial value is “recorder”. This variable determines which
recorder process is in use.

<operator>: String. Initial value is “operator”. This variable determines which oper-
ator process is in use.

3.7 OPERATOR PROCESS

The operator process can be used, on UNIX workstations, to interact with UNIDAQ.
When TCL/TK is installed, running operator actually means running UNIwish (see section
3.11 below) with the operator.tcl script. The functionality is similar to the no-TCL/TK
process described below although everything is located in one window instead of four, and
the interaction with runcontrol is a little less in the TCL/TK version, since more checking
is done before actually sending commands to runcontrol.

Commands to the operator process (such as QUERY_RUNPAR) are configured as part of
the runcontrol process macros. In essence the person on shift clicks a button, eg, “Begin
Run”, which action is sent to runcontrol. Runcontrol finds the commands to the operator
process (among other operations to be performed) in the macro file and sends them to it,
which responds by asking the person on shift for the appropriate parameters.

The (no TCL/TK version of) operator process reacts to the following commands;

QUERY _RUNPAR: After receiving this command, the operator asks new run pa-
rameters from the person on shift. The run-number, event source and the maximal number
of events in a run can be modified in the appropriate on-screen window boxes. After mod-
ification the operator sends the new variables to runcontrol.

QUERY_STORAGE: After receiving this command, the operator asks new storage
parameters from the person on shift. Again these are entered in the appropriate window
boxes. After modification the operator sends the new variables to runcontrol.

PROMPT <args>: After receiving this command operator displays <args> in the
command line window (see figures 2 and 3) and waits for a response from the person on
shift (ended by a return). Afterwards the response is sent to runcontrol, which stores it in
the user-level variable re_prompt for further use.

Every three seconds the operator process reads the new values of the run parameters
from the Status Path, and updates the screen. The operator opens 4 windows on the

21

screen (see figure 2) in the case of vanilla X, one window (see figure 3) in the case using

TCL/TK:

- STORAGE: In this window the event-sink parameter is set. In the initialize-phase
of a run the storage parameters can be changed in this window. Furthermore, this window
shows the name of the recorder process, as known by runcontrol. This name can be changed

by typing “set recorder = newname” in the COMMAND LINE window.

- RUNPAR: This window displays the run parameters. Some of the run-parameters
(run number, maximal number of events, event source) can be modified during the initial-
ization phase of a run. Furthermore, this window shows the name of the collector process,
as known by runcontrol. This name can be changed by typing “set collector = newname”

in the COMMAND LINE window.
- RUNCONTROL: This window consists of a set of buttons that can be used to send

commands to run control. Furthermore, this window displays if the operator is privileged
to send commands. If the operator is not privileged clicking on the buttons has no effect.
Furthermore, this window shows the name of the runcontrol process, as known by operator.
This name can be changed by typing “set runcontrol = newname” in the COMMAND
LINE window.

- COMMAND LINE: This line can be used to send commands to runcontrol. Com-
mands are only sent to runcontrol if the operator is privileged. To enter the privileged
mode type PRIVI. To leave this mode type NOPRIVI. The command EXIT stops the

operator process.

The operator process can be started and stopped at any time. This does not influence
the state of the online system or a run. However, the operator is the interface between
the person on shift and the online system. Stopping the operator means that the person
on shift has no knowledge on the state of the online system other than that garnered by
browsing through the messages of the loghook/murmur windows (as described below) or
by “ask”ing a process for the value of its user or system variables.

Operator User-level Commands:

QUERY_RUNPAR, QUERY_STORAGE, and PROMPT.

Operator User-level Variables:

runcontrol.

Operator Critical Variables:

runcontrol.

3.7a. User Level Variables

<runcontrol>: String. Initial value is “runco”. This variable determines which run-
control process is in use.

22

3.7b. Using the Operator Process

As mentioned before, when starting the operator, four screens (figure 2) or one screen
for TCL/TK (figure 3) appear on the workstation display. First of all, the operator process
needs to be privileged to send messages to runcontrol. This can be achieved by typing the
command

PRIVI
in the Run Control Commands window, after the “command>>" prompt.

Afterwards, this window can be used to send commands to runcontrol by simply typing
the command. An exception to this is the command ‘EXIT’, which will be passed to the
operator process causing it to stop and not to runcontrol. See the Technical Guide for a
summary of the commands understood by runcontrol.

The Run Control window contains seven buttons, together with a notification which
displays if the person on shift can send messages to runcontrol or not (privileged/NOT
privileged). The remainder of this section contains a description of the default actions
performed when clicking on the buttons. The actions taken depend on the input file of
runcontrol, command.list, and will change from this description if the file is modified.
The detailed actions of runcontrol to the commands listed below are summarized in the

Technical Guide.

1. Start cold— When the run is in a stopped state (status Idle), the
‘BEGIN_RUN_COLD’ command is sent to runcontrol.

2. Start warm— When the run is in a stopped state (status Idle), the
‘BEGIN_RUN_WARM’ command is sent to runcontrol.

3. Stop — When the run has not yet stopped (status not Idle), it sends command
‘STOP_RUN’ to runcontrol.

4. Suspend — When a run is in progress (status Run) it sends command ‘SUS-
PEND _RUN’ to runcontrol.

5. Continue — When the run has been suspended (status Pause), it sends command

‘CONTINUE_RUN’ to runcontrol.

6. Download — When the run is stopped (status Idle) it sends command ‘DOWN-
LOAD’ to runcontrol.

7. Initialize — When the run is stopped (status Idle) it sends command ‘INITTALIZE’
to runcontrol.

3.7 c. Modifying Run Parameters
When sending an ‘INITTALIZE’ or ‘BEGIN_RUN_COLD’ command to runcontrol,

runcontrol asks the person on shift to confirm the run (and storage) parameters. The

‘Run Control Commands’ window now displays a button in the upper right corner. One
should click on this button if the run parameters are set properly. The run parameters
that can be modified are the only parameters which are shown at this time in the ‘Run

Parameters’ window. Both the ‘INITIALIZE’ and ‘BEGIN_RUN_COLD’ commands will

23

increment the run number (unless the run number is zero) before asking new information

of the person on shift. ‘BEGIN_RUN_WARM’ only increments the run number.

After clicking the button, the run parameters are sent to runcontrol, and a new button
appears in the ‘Run Control Commands’ window. This time it is possible to change the
Storage parameters in the ‘Storage’ window. One can put “dummy” in the event sink, in
which case no output will be written. Or one can put a directory name in this window,
which means that the recorder will write data to that specific directory. The default is to
write in the working directory from which recorder was started. ‘BEGIN_RUN_WARM’

performs none of these actions but simply re-uses previous settings.

Both ‘BEGIN_RUN_WARM’ and ‘BEGIN_RUN_COLD’ will ask the person on shift
for a begin run comment. This is to be typed in at the command line. Runcontrol passes
this comment to the collector process as part of the BEGIN command processing.

After clicking the button, the storage parameters will be sent to runcontrol, and all
parameters are modified (or set) according to the needs of the operator.

3.8 XPC PROCESS

The XPC (eXperimental Process Control) checks if all processes are alive and maintains
the Common Table and Status Path of the (UNIX) processor on which it runs. (Re)starting
and stopping processes can be done using the XPC. When the XPC starts, it first creates
shared memory. All global variables are stored in this shared memory. If the XPC dies
abnormally, this shared memory will be used by the next XPC-process. After that the XPC
determines which processes are running. All online processes will be monitored, including
processes which are not started by the XPC but rather in the normal UNIX fashions. Only
processes that are started by the XPC can be restarted automatically.

XPC User-level Commands:
START, STOP, IGNORE, INTERRUPT, UPDAT_TBL and TEST _XPC.
XPC User-level Variables:

queuetest,.

Process Critical Variables:

None.

3.8 a. User-Level Commands

The descriptions of the zpc user-level commands are given below:

START </YES/NO] [-p t1] name[@node] [args]>: Starts process name at node node.
When the first argument is “YES”, the process is restarted automatically after it dies
abnormally. The “-p” argument determines the time between successive checks of the
status of the process. The default value is 60 (seconds).

STOP <process_name>: If the process is running locally, the zpc stops the process
by sending the “EXIT” command, otherwise this “STOP” command is forwarded to the
remote zpc.

24

IGNORE [ON/OFF | <process_name>: Normally, the zpc checks the state of all
local processes. With this command, the state of the corresponding process is not checked
by the zpc. The use of this command is not recommended. If <processname> is not
supplied, it is assumed to be the sending process. If <process name> IS supplied, then
one of ON/OFF must also be supplied. ON indicates the process should be ignored by
the XPC. OFF indicates the XPC should again pay attention to whether the process is
responding. The default is ON, so the command IGNORE with no arguments is interpreted
to mean the sending process should be ignored.

INTERRUPT <process_name>: Sends a signal to a process, causing that process
to set the variable “interrupt_flag” to 1. It is recommended that users programming time
consuming routines check regularly if this variable is set (see the discussion of this variable
at the end of Chapter 5).

UPDAT_TBL <process_name node status>: This command is used among different
zpc’s to notify each other that the common table needs updating.

TEST_XPC : Upon receiving this message, the zpc sends an “ALIVE” message back
to the sending process, which is expected to be the zpc_checker. This message is used by
the zpc_checker, and is for internal use only.

3.8 b. User Level Variables
< queuetest>: Integer. This variable is used by the zpc to periodically test the status

of message queues. This variable is for internal use only, and should not be modified by
other processes.

3.9 XPC CHECKER

There 1s only one zpc_checker running on UNIX in the complete system. It checks all
machines where an XPC should be running (An XPC should be running if it has been
started once after the latest Reset). If an XPC should be running on a node and is found
to be dead, a new XPC is started on that node. The checker itself is checked by the XPC

on the node where it is running and might be restarted if it is dead.
XPC checker User-level Commands:
ALIVE
XPC checker User-level Variables:
None.

XPC checker Critical Variables:

None.

3.9 a. User-Level Commands
The descriptions of the zpe checker user-level commands are given below:

ALIVE: This command message is the response of an zpc process to a TEST XPC
message from the zpc_checker.

25

3.10 LoGBOOK PROCESS

The logbook process is essentially a means of maintaining a history of UNIDAQ op-
erations. Starting and stopping of processes is recorded along with run statistics. All
the processes in the $TOPUNIDAQ/sre/control directory have a number of error codes
assigned to them which are used to track their operation, and thereby the operation of

UNIDAQ. The logbook process does not run on VXWORKS machines.

The logbook is able to receive messages from all other processes as well. In general
the messages consist of an error-code combined with from zero to four strings. If the
error-code is zero, the strings are simply logged to a file called log.bookYYMMDD, where
YYMMDD is the current date and sent as-is for display by murmur. If the error code is
non-zero, then it is assumed to be a pre-defined error code and the strings are assumed
to be the parameters of the associated message text. Known error codes and text are
read at process initialization and have severities ranging from Success and Informative to
Warning and Error. The severity is used to route the message to the correct murmur
window. Changes to the error code/text are propagated from the murmur-server via
the murmur_con program, but do not require recompiling logbook. In all cases messages
are both logged to disk and sent to the murmur-server. By default at installation time
the log.bookYYMMDD files are stored in $TOPUNIDAQ/log, but this directory can be
changed during the installation. See the Technical Guide and the Installation Guide for
further discussions of the error codes and messages.

Loghook User-level Commands:

read, log and RoundUp
Logbook User-level Variables:

None.

Logbook Critical Variables:

None.

3.10 a. Logbook Commands

Logbook understands the following commands:

read <file>: The named text <file> is read and copied to the log.hookYYMMDD
file. <File> must either be in the working directory from which logbook was started or be
an absolute path name.

log <message>: The specified <message> is copied into the log.bookYYMMDD file.
These messages also appear in the murmur “General Log” window. This command is
equivalent to the RoundUp command, with an <error code> of zero and <npar> = 1.

RoundUp <error code> <npar> [<\n message 1>] ... [<\n message npar>]: This
command, which is not accessible at the shell command line due to the embedded new-line
characters, is that used to log murmur messages. <error code> is the pre-set murmur
error code, <npar> is the number of string parameters to follow in the range 0—4, and the

26

remainder of the parameters are the optional, new-line prefixed, string parameters with
the number supplied matching the value of <npar>.

3.10 b. Viewing the Logbook Files

If murmur is running, the progress of UNIDAQ is reported in the X-windows owned

by the murmur server (see the next chapter). Alternatively, or if the murmur server is not
running, the logview tool may be used to view the current log.bookYYMMDD file. See
the “Additional Tools” chapter of this manual for details.

3.11 UNIWISH SHELL

If TCL/TK is installed, the UNIwish shell is created as an interface between TCL/TK
and UNIDAQ. UNIwish behaves as a standard UNIDAQ process, while having the full
functionality of the “wish”-shell, which is distributed with the TCL/TK package. Below,
UNIwish will first be described as a standard UNIDAQ process, followed by a description
of differences between UNIwish and wish.

3.11 a. UNIwish as a UNIDAQ process

UNIwish is able to receive standard UNIDA(Q commands. Furthermore, it can receive
NOVA-buffers, depending on the tcl-seript used when starting this process. Next to check-
ing for messages and NOVA-buffers, UNIwish is also able to react to commands given by
the user, either using the mouse or the keyboard.

UNIwish User-level Commands:

none.

UNIwish User-level Variables:

None.

UNIwish Critical Variables:

None.

3.11 b. Differences between wish and UNIwish

UNIwish responds to all UNIDAQ commands and command line options. It also
registers itself in the UNIDAQ Common Table and Status Path. Furthermore, the wish
“exit” command has been modified to nicely clean up the Common Table and Status Path.
Next to these UNIDAQ neccesities, differences are kept to a minimum. There are some
additional tcl-commands and an additional global variable can be used in the tcl-scripts.

All of this is described below.

Additional UNIwish global variables

ownpname: Contains the name by which this invocation of UNIwish is known by the

other UNIDAQ processes.

27

Additional UNIwish commands

ask < process_name > < message >: Sends a message to process process_name. Re-
turns a tcl-error when the message cannot be sent.

proc_num _var < process_name >: Retrieve the total number of variables stored in
the status path for process process_name.

proc_var_num < process_name > < variable number > : Retrieve the value of variable
variable number of process process_name from the status path. Variable number must be
less than or equal to the total number of variables of the process held in the status path.

proc_var < process_name > < variable_name >: Gets the value of the variable var:-
able_name belonging to process process_name using the Status Path. Returns the error
code “Error in read_value” when the call fails.

date_val < date > : Converts an integer value to a date, using the standard “ctime”
subroutine. This allows for displaying the “start-of-run” and “end-of-run” dates as stored
by the collector process.

nova_get : When first called it connects to the NOVA buffer manager, and gets the
first buffer. Subsequent calls only get new NOVA buffers. Returns “0” when succesfull,
otherwise it returns a “-1”.

nova_put : Releases a NOVA buffer.

next_event : Gets the next event out of the current NOVA buffer. Returns “0” when
succesfull, otherwise it returns a “-17. If this call is not succesful, the NOVA buffer has to
be released and a new buffer has to be retrieved from NOVA.

event_data < offset > < word_type > : Retrieve a dataword from the event. The
word_type can be “integer”, “real”, or “string”. The offset starts at 0.

event_header < offset > : Gets a header word from the current event. The offset
starts at 0.

status_num _var : Retrieve the total number of process entries in the status path.

status_var_info < status_number > : Retrieve the status path information of the
process in position status_number within the table.

3.12 UNIVIEW

UNIview is a tool allowing a graphical view of the UNIDAQ processes. It is imple-
mented as a TCL/TK script and therefore is only available when UNIDAQ is built to use
TCL/TK. It presents a window to the user showing the process tree of UNIDAQ, with
machines shown across the top of the view, and the processes running on those machines
shown as downwards branches. The process boxes are color coded, with red showing dead
processes, yellow showing busy processes and green showing live processes, where the dead,
busy and live states are determined from the information in the UNIDAQ process status
table.

28

Clicking the left mouse button on any process icon pops up a box showing the list
of system and user variables of the process together with their current value. Clicking
the “EXIT” button on the expanded process closes it back to its iconic state. UNIDAQ
machines are normally shown expanded, but can be compressed to icons (with the process
branches now hidden) by clicking on them.

If more than six UNIDAQ processes are found in the common table the additional
processes will be hidden off the side of the display. A scrollbar at the bottom of the
display will bring these processes into the active window.

The UNIview display does not update regularly, but rather gives a snapshot of the
UNIDAQ state. An “UPDATE” button exists on the display though which will query the

status path and common table, and revise the display with the new information.

4. MURMUR

Murmur is a client-server, error reporting package developed at Fermilab. Errors have
a VMS-like syntax, with a program related prefix, a severity, a short mnemonic, and a
more complete text.

If the murmur server is running it will have three associated display windows. The first
is labeled “General Log” and contains all purely text messages (such as those from the
“ask loghook log some text” shell command) and those with either Success or Informative
severity. Messages in these severity categories track the state of UNIDAQ), eg, starting or
ending runs.

The second window is labeled “Warning messages” and contains messages of that

severity. For example if you are running operator but are not privileged, and attempt to
begin a run, you will be notified here of your failure to do so.

The final window is labeled “!! FAIL !'” and contains messages of Fatal severity. For
example the premature death of a program is recorded here.

4.1 STARTING THE MURMUR SERVER

The murmur server will only run on a SUN Sparc or an SGI platform. If one is not
available, that is not a disaster — UNIDAQ does not require murmur, rather murmur is a
convenient tool for displaying the logged system status.

To start the murmur server, add to the “Start_node” script on the appropriate machine
the line
murmur_Start

Since murmur does not register with the common table, this line can go anywhere in the
script, with one restriction: murmur must start before the logbook process. This is because
logbook is a client of the murmur server.

29

The alternative to the “Start_node” script for starting the murmur server is to simply
log into the node, and then issue the command
murmur_Start

at the shell prompt.

4.2 STOPPING THE MURMUR SERVER

To stop the murmur server, log into the node where it is running and issue the command

murmur_Stop

It is best, but not required, to do this after the logbook process is stopped.

5. AN EXAMPLE SESSION: COSMIC RAY TESTS OF
SDC PROTOTYPE MUON DRIFT TUBES

In this chapter we provide a complete example session with parts of the UNIDAQ
Portable DAQ System. This example session is based on the use of the system in Cosmic
Ray Tests of SDC Prototype Muon Drift Tubes. The example demonstrates how to modify
collector code, according to the current configuration of the hardware and the data source,
how to add new histograms to the dynamically linked analyzer process ana_d, display
variables with dataview, and play back data files for additional analysis.

CAMAC SFVME SUN Sparc

o) 3
< o =

x N = [T wo w

3 N || 28 58 =S ST

3 § 0’ S8 >g /\/ =3

= - NE NE K %)
[*)] o =
0O I
X N4

—
—

Trigger Drift
Scintillator Tube
Signal s Signal s

Figure 4. Hardware Configuration of Cosmic Ray Tests
of SDC Prototype Muon Drift Tubes

5.1 HARDWARE CONFIGURATION OF THE TEST AND MODIFYING THE COLLECTOR

Collector interacts with the event source, reads the event data from the event source,
and stores the results into a buffer. The operations related to the event source are hard-
ware dependent, and should be provided by the user of the system. In this section, we
demonstrate how to attach these routines to the system. We start with the hardware
configuration of the example system. The hardware configuration of the Cosmic Ray Test
is illustrated in Figure 4.

30

The user is supposed to provide seven procedures to the collector, one for process_event
to call, one each for program initialization and termination, and one for each of the following
collector commands: BEGIN, PAUSE, RESUME, and END. These routines are respec-
tively called by the generic names user_event, user_init, user_exit, user_begin, user_pause,
user_resume and user_end and appear in the file user_event.c . The content of each of the
user procedures in this test, based on the skeleton provided in the UNIDAQ distribution,
is given in Figure 5. “Mode” and “run_type” are the collector user-level variables ‘mode’
and ‘runtype’. “Max length” is the maximum size the event may attain (in words), and
“buffer” is the array of length “length” into which the data is to be placed. “Event_length”
and “event_ID” are returned as the number of words filled in buffer by the data acquisition
sequence and the buffer type. Note that the calling code for PSEUDO events, typically
events filled with random numbers, is also included in this example.

Finclude “camlib.h”

#define L4448 7 /* Slot number of 14448 */

#define 12277 12 /* Slot number of 2277 */

#define MAX_EVENT_SIZE 100 /* used for pseudo event initialization */

usernit (max_length)

int *max_length;

{
if (strcmp(eventsource,” PSEUDO”) == 0) {
eventSrcType = PSEUDO;
*max length = MAX_EVENT_SIZE;
}
else {
*maxJength = 1000;
eventSrcType = OTHER;
}
return;
}
user_event (buffer, length, event_length, event ID, max_length, mode)
int *buffer; /* pointer to buffer */
int *length; /* buffer length */
int *event_length; /* user_event must set the event length */
int *event_ID; /* user_event must set the event ID word */
int *maxlength; /* max words an event should occupy */
int *mode; /* mode of event taking, for those who use it~ */
{
int dat, q, x, 1;

int mask, status;
if (*length < *max_length) return ERANGE;

*event_length = 100;
status = CAM_WaitLAM(3);
CAMAC(NAF(1L4448,0,9), &dat, &q, &x); /* Clear LAM */

31

if (status == ETIMEDOUT) { /* timedout */
return status;

}

if (*mode == 0) {
*event_ID = EVENT_RECORD;
CAMAC(NAF(L4448,0,11), &dat, &q, &x);
CAMAC(NAF(L2277,0,0), &dat, &q, &x); /* Read TDC */
1=0;
while (q !1=0) {

buf[++i] = dat;
CAMAC(NAF(L2277,0,0), &dat, &q, &x); /* Read TDC */

}
bufl0] = i+1; /* Store number of TDC “hits” */
CAMAC(NAF(L2277,0,9), &dat, &q, &x);
*event_length = i+1;

}

else {
*event_ID = ENVIRONMENT_RECORD;
*event_length=100;
flush_buffer(””,””);

}

return(0);
}

user_begin(run_type, max_length)

int *run_type, *max_length;

{
if (stremp(eventsource,” PSEUDO”) == 0) eventSrcType = PSEUDO;
else eventSrcType = OTHER;

/*

*

*/

eventSrcType may have changed, so be sure to reset max_length

if (eventSrcType == PSEUDO) {
*max length = 150;
pseudo_begin();
return 0;

}

else {
*max_length = 1000;
CAMOPN();
CSETBR(1);
CSETCR(0);
CGENC();
CGENZ();
CREMI();
CAM_DisableLAM();

return;

32

user_pause (mode)
int *mode;
{

int dat, q, x;

)

if (eventSrcType == PSEUDO) {

pseudo_pause();

return 0;
}
else {
CAMAC(NAF(L4448,0,24), &dat, &q, &x); /* Disable LAM */
CAM_DisableLAM();
return;
}
}
user_resume (mode)
int *mode;
{

int mask, dat, q, x;

if (eventSrcType == PSEUDO) {
pseudo_resume();
return 0;

}
else {

mask = 1 << (L4448 - 1);

CAM_EnableLAM(mask);

CAMAC(NAF(L4448,0,26), &dat, &q, &x); /* Enable LAM */
dat = 12161,

CAMAC(NAF(L2277,0,7), &dat, &q, &x);

return;

}

user_end (run_type)
int *run_type;
{
if (eventSrcType == PSEUDO) {
pseudo_end();
return 0;
}
else {
CAM_DisableLAM();
CAM _Close();

return;

33

user_exit() {
return;

}

Figure 5. Procedures corresponding to the collector camac operations.”™

The user is supposed to set the event source after starting the collector. Two event
sources (CAMAC and PSEUDO) are provided in UNIDAQ 2.3 . CAMAC in this context
means any real set of hardware, including VME and CAMAC modules. If the user wants
to use the hardware setup given in Figure 4, he/she should set the event source as follows:

ask collector set event_source = CAMAC.

Otherwise, if the user wants to test the system with a pseudo-random number generator,

he/she should set the event_source to PSEUDO:

ask collector set event_source = PSEUDO.

If the operator process is in use, then instead of the ‘ask’ tool one simply enters CAMAC
or PSEUDO in the appropriate window box when starting a run.

See the Technical Guide for details of other subroutines available within the collector
process.

5.2 HISTOGRAMS AND THE ANALYZER

The dynamic analyzer process ana_d is used to plot on-line histograms of the incom-
ing data. The histogram filling procedures are dynamically linked to the ana_d. In our
example, four histograms are defined for number of hits, drift time leading edge, drift time
tailing edge, and width. These histograms are filled using the procedure FILL_ MUON
which is defined in muon_hist.f (Figure 6). Two arguments are passed to the routine, the

event data (array IDATA) and the event header (array IHEADER).

SUBROUTINE FILL_MUON(IDATA, THEADER)
INTEGER IDATA(*), IHEADER(*)

COMMON /PAWC/HMEMORY (10000)

LOGICAL FLAG/.TRUE./

IF (FLAG) THEN
CALL HBOOKI1(1, ‘Number of Hits $’, 80, 0, 80, 0.)
CALL HBOOKI(2, ‘Drift Time Leading Edge $°, 170, 0, 3400, 0.)
CALL HBOOK1(3, ‘Drift Time Tailing Edge $°, 170, 0, 3400, 0.)
CALL HBOOK1(4, ‘Width’, 50, 0, 100, 0.)
FLAG = .FALSE.

ENDIF

IEvent_Muon = IDATA(1)
CALL HF1(1, FLOAT(IEvent_-Muon), 1.)

(2,
(3,

* See Usage Guide of CAMAC Library for UNIX Version 0.8, Y. Yasu, KEK Online Group, for details
of these CAMAC subroutines.

34

DO III = 2, TEvent_Muon
IHit_Muon = RSHIFT(AND(IDATA(IIT), x’10000"),16)
IChannel Muon = RSHIFT(AND(IDATA(III), x’3E0000), 17)
ICount_Muon = AND(IDATA(IIT), x’FFFT)
IF (IHit_Muon.EQ.1) THEN
CALL HF1(1,FLOAT(ICount_Muon), 1.)
Lead_Channel = IChannel _Muon
Lead_Count = ICount_Muon
ELSE
CALL HF1(3, FLOAT(ICount_Muon), 1.)
IF (Lead_Channel .EQ.IChannel_ Muon) THEN
CALL HF1(4, FLOAT(Lead_Count - ICount_Muon), 1.)
ENDIF
Lead_Count = 0
Lead_Channel = 0
ENDIF
ENDDO
RETURN
END

Figure 6. Filling the Histograms.

In order to display these histograms, the user should send the following commands to
the ana_d:
link muon _hist.f
add muon_hist.f fill_muon
display muon _disp 5

Here, a muon_disp.kumac is defined as shown below. The value “5” supplied on the
associated “display” command is the time interval in seconds between successive executions
of the kumac. Any convenient interval could have been chosen instead. Upon first entry
to the macro, “FIRST” is set so that the display is properly initialized and the histograms
properly plotted.

MACRO muon_disp FIRST = NO
IF [FIRST] = NO GOTO UPDATE
zone 2 2
histogram/plot 1 k
histogram/plot 2 k
histogram/plot 3 k
histogram/plot 4 k
update:
histogram/plot 1 u
histogram/plot 2 u
histogram/plot 3 u
histogram/plot 4 u
call igterm
return

35

5.3 DISPLAYING DATA WITH DATAVIEW

5.3a. Without TCL/TK

In order to display data using the dataview process two files have to be edited. Both
these files are located in directory $§(USERUNIDAQ)/dataview. The first file to be modified

is file datawin.h, which contains the description of the dataview window. As an example,

to display only the number of hits, which is stored in the first data word (see Figure 5),
this file would look like:

struct dw.def {
char txt[20];
int (*conversion)();

}s
extern int nr_ hits();
struct dw.def dview[] = {
"nr hits", (int(*)())nrhits,

}s
#define MAX N_SL DATA 10
int n_sl._data = sizeof(dview)/sizeof(struct dw_def);

The nr_hits() subroutine creates a character string from the data. This routine needs
to be coded in dataconv.c, the code would look something like:

nr hits(header,data,txt)
int *header,*data;
char *txt;

{

if (header[1] == EVENTRECORD) sprintf(txt,"%d",datal0]);
else strcpy(txt,"No dataword");

}

After recompiling and starting the dataview process, a window will appear which con-
tains the number of hits in the current event, and which continuously updates with each
new event buffer.

53b. With TCL/TK

As mentioned before, when using TCL/TK the dataview functionality is determined
by a tel-script called dataview.tcl located in the $USERUNIDAQ/conf directory and read
by the UNIwish shell.

If one wants to display the number of hits (the first dataword), as in the previous
example, this file needs to be modified in several places as shown below:

set nrhits " Number of hits:"
set dtcolor white

Add a label for each individual parameter (you might consider one for
the description as wel)

frame .evtdata -borderwidth 1 -background $dtcolor
label .evtdata.nrhit -textvariable nrhits -anchor w -background $dtcolor \
-borderwidth 1 -relief raised -foreground black

place it all in the window
#f-———_—_———————————————
place .evtdata.nrhit -relx O. -rely 0. -relwidth .4 -relheight .2
#f-———_—_—_—_—————————————

The events are read in, now fill the display variables
with whatever you like checking on a lot or not at all

proc display.data {}{
global nrhits
set nrhits " Number of hits: [event_data 0]"

}

After editing the file, dataview can immediately be restarted without any other inter-
mediate action.

5.4 AN EXAMPLE RUN OF THE PORTABLE DAQ SYSTEM

In this section, we demonstrate an example run, using a UNIX machine, of the portable
data acquisition system, UNIDAQ 2.3 . Even though the system can be run in several
different ways, the following set of commands are provided as an example to the user who
does not have any experience with the system and wants to see it work at the most basic
level. In this example, among the UNIDAQ) user processes only analyzer, dataview, and
collector are executed. The dynamically linked ana_d is that used in this example.

First, change directory to the one in which you have prepared muon hist.f and
muon_disp.kumac.

[1] ed my_directory
Then execute NOVA, the buffer manager process, with the following command.

[2] novad /tmp/nova &

37

Next start the collector, dataview, and analyzer.
[3] collector &
[4] dataview &

Steps [2] through [4] could as easily have been performed by simply typing the command
“Start”. In this case the Start_node script for your machine should have been edited
to start only the NOVA, collector, and dataview processes, in addition to the standard
XPC and msg_server processes.

Note: The dynamically linked analyzer process should always be run in the foreground,

so start analyzer in its own window.
[5] ana_d

To see which processes are successfully started use the status tool.
[6] status

Next, link the files to paw in the analyzer interface with the following commands.
paw > link muon_hist.f
paw > add muon_hist.f fill muon

To start the collector data processing, issue the following commands to collector:
[7] ask collector set eventsource = PSEUDO

Note: When you set the event source to PSEUDO the collector generates random data
between zero and one hundred.

[8] ask collector begin
[9] ask collector resume

Note: Steps [7] through [9] can as well be handled by the operator process in conjunc-
tion with runcontrol.

And finally, in the analyzer interface use the display command to see the histograms
plotted once every five seconds.

paw > display muon_disp 5
To end a run.

[10] ask collector end

[11] ask collector exit

[12] ask dataview exit

paw > display off

paw > unlink muon _hist.f

paw > exit

Then issue the Reset command to reset the system.

38

5.4 a. Interrupting a Process

If a process such as collector is going to take a long time to process a command or
perform some action, it is a good idea to periodically check from within the code to see if
the process has been told to abort. This is done by checking the value of a variable which
all template-using processes hold in a global area. The variable is called interrupt_flag,
and its value is normally zero. If this value is anything else, then the process has been told
to abort its action, and it should immediately do so and return from the subroutine.

Doing this is not required, it is merely a convenient means of kicking some response
back into a process. The variable value is always reset to zero by the main loop of the
template.

5.5 PLAYBACK OF A DATA FILE

5.5 a. Within the UNIDAQ environment

It is possible, once a data file has been recorded on disk, to play it back through
UNIDAQ again. This is useful, for example, if you wish to run enalyzer over again on a

data set. Several methods are available for selection. In this example we choose to use the
from_pipe tool. See Chapter 6 for other methods. Using from_pipe the syntax is to issue
the command

cat name-of-data-file | from_ pipe

In this case from_pipe is the event source for NOVA instead of collector. Also, you may
want to force your analyzer to have a sufficient priority (-p switch) to receive all events in
this case.

5.5 b. Playback without the UNIDAQ environment

Both the ana_d and ana_nd processes have off-line equivalents, namely ana_d_off and
ana_nd_off. These processes can be run independently of the rest of the UNIDAQ system.
To do so, simply start them as in the previous section, and after you have set up the
program as you wish, issue the analyze command at the PAW> prompt:

analyze name-of-data-file

The specified data file will be played back through the process with analysis as specified
by the linked subroutines.

39

6. PASSING EVENT BUFFERS BETWEEN MACHINES
IN A DISTRIBUTED ENVIRONMENT

6.1 USING THE BUFFER MANAGER TO PASS DATA

With the incorporation of NOVA v1.05, a natural means now exists to pass data buffers
between machines independent of byte ordering. The means of doing this is quite simple.
On the machine where the novad process is running, and which is the source of event data,
a network daemon process must also be started. The initial ‘start node’ script starts this
automatically after novad is started. To do it manually, you must type the command

novand >& /dev/null &
Following this, processes such as analyzer which operate on event data buffers may be
started on other machines by adding “-m nova_machine” to the command line, where
“nova_machine” is that one on which novad and novand are running.

On some machines, warning messages are printed in the window where this analyzer
process is running, but these can be ignored; they are merely informative.

Note that if you are using the global section analyzer process ana_gl, then the his-
tograms created are available only on the machine on which it is running. To access them,
PAW must also be run on that machine.

A special process called recerver is available which will fetch events from other machines
and then place them in a local NOVA buffer. See below for a description of this method.

6.2 UsING P1PES TO PAss DATA

UNIDAQ 2.3 is developed to run on multiple workstations. Using the method of the
previous section buffers of events can be passed to machines other than that on which
they were acquired. A second method using pipes is also provided to be able to pass
event buffers between machines. For example, the user may want to run the collector in
workstation W1 and the analyzer in workstation W2. The pipe connection is established
by means of two processes: to_pipe and from_pipe. To_pipe gets the event buffer from
NOVA and writes the buffer to its stdout, and from_pipe reads the data from its stdin and
places it into a NOVA buffer, as illustrated in Figure 7. Using this method NOVA must
be running on both involved machines.

An example run on two different workstations is demonstrated below. In this example,
it is assumed that the collector process is running in Workstation 1, and the analyzer is
running in Workstation 2.

WORKSTATION 1 WORKSTATION 2
[1] novad /tmp/nova & [4] novad /tmp/nova &

40

Figure 7. Running Analyzer on a different workstation using pipes.

[2] collector & Next add any other processes, ie,
[3] ask collector set eventsource=PSEUDO analyzer, recorder, dataview, UNIdump, ...
[6] analyzer
[5] to_pipe | rsh [workstation2] \
'$(TOPUNIDAQ)/bin/from pipe’
[7] ask collector begin
[8] ask collector resume

Note the rsh UNIX command requires a .rhosts file to be created in the user’s home
directory on Workstation 2. On the HP one must use ‘remsh’ instead of ‘rsh’. On all

machines the actual directory must be specified because $(TOPUNIDAQ) will not be
known in the rsh environment.

It is apparent that from_pipe and to_pipe can also be used in a single workstation
together with UNIX shell commands for some other purposes. For example, the following
command can be used to get the octal dump of event data:

to_pipe | od -h | more

6.3 USING recetver TO PASS DATA

A third method of passing events between machines is also available. The receiver
process is designed to fetch NOVA buffers from a remote machine, and put this data into
a local NOVA buffer, from which the data can be passed to other processes. In order for
this to work, the remote machine must run both novad and novand. The local machine
must run novaed, and recerver must be started using the command

receiver -m remote_machine >& /dev/null & (UNIX)
sp receiver, ‘‘-m’’, ‘‘remote_machine’’ (VXWORKS)

41

Other processes can be started on the local machines in their normal way, that is to say
without the -m option.

6.4 UsiNG UNIDAQ iN A cOMBINED UNIX-VXWORKS ENVIRONMENT

In a combined UNIX-VXWORKS environment, the control processes will run on the
UNIX workstation, while datataking will be done on VXWORKS. The data can be recorded
either on VXWORKS, or on the UNIX workstation. Analyzer and dataview processes are
only available on the UNIX machine. In the example below it is assumed that recorder is
located on the UNIX workstation.

1. The nodefiles on both UNIX and VXWORKS need to be modified to contain the

internet addresses (name.network) of both machines.

2. Both Start-scripts need to be modified as shown below to load and start all needed
processes.

The Start_unix file should look as follows:

#!/bin/csh
onintr -
source $USERUNIDAQ/setup.csh
msg_server >& /dev/null &
xpc >& /dev/null &
if (! $?LOCAL_NOVA) then

setenv LOCAL NOVA /tmp/nova
endif
if (-e $LOCAL NOVA) rm $LOCAL _NOVA
novad $LOCAL NOVA >& /dev/null &
sleep 1
ask xpc START receiver -m <vxworks_ node-name>
ask xpc START recorder
ask xpc START dataview
ask xpc START YES runco
ask xpc START YES logbook
ask xpc START YES xpc_checker

The Start_vxworks file should contain the following:

cd 1ib

1d <vxshm.o
cd ../NOVA/src
1d <novad

cd ../netsrc
1d <novand

cd ../..

sp novadmain
sp novand_main
cd bin

1d <msg_server
Sp msg_server

42

1d <collector
sp collector
1ld <status

1d <repair

1d <ask

3. In one window rlogin to VXWORKS
4. On UNIX type Start_local, and on VXWORKS type <Start_vxworks

5. On UNIX start operator and analyzer as detailed in previous sections. Start the run
using operator as explained earlier.

Afterwards, you can stop UNIDAQ on the UNIX machine by typing Reset_local. On
VXWORKS you have to stop each individual process, using the ask tool.

7. ADDITIONAL TOOLS

Of the tools described below, only the status, ask and repair tools are available on
VXWORKS platforms. Differences between their useage in UNIX and VXWORKS are

described in the corresponding sections.

7.1 UNIpuwmp

The UNIdump tool allows the user to display the event data. For each event, the
tool displays the event header, and then for each word of the event, it displays the word
number, the integer representation, the first two bytes integer, the last two byte integer,
the ASCII representation, and the hex representation of the four bytes. See figure 8 for an
example of the UNIdump output.

UNIdump has three commands which are ON, OFF, and EXIT. The ON command
allows the user to specify a range of words to be displayed for each event. For example ON
10 20 would display the header, and then the tenth word through the twentieth word of the
event buffer. The default state, which is ON with no parameters, prints the entire content
of the user data portion of the buffer, excluding the event header. The OFF command
suspends all displays when issued. The EXIT command allows the user to exit the process
from the system.

43

Event Length = 106 words
Event Type =10

Run Number = 0

Mode =0 Reserve One =0
Word Number I*4 I*2(1st)
0 106 0
1 0 0
2 0 0
3 14 0
4 0 0
5 0 0
6 84 0
7 83 0
8 75 0
9 31 0
10 13 0
11 5 0
12 46 0
13 73 0
14 15 0
15 66 0
16 13 0
17 84 0
18 13 0
19 25 0
20 2 0

Figure 8. Dump Output

Event Number = 14

I*(2nd)

106
0
0
14
0
0
84
83
75
31
13
5
46
73
15
66
13
84
13
25
2

ascli
]

Cinl

hex
0000006 A
00000000
00000000
0000000E
00000000
00000000
00000054
00000053
0000004B
0000001F
0000000D
00000005
0000002E
00000049
0000000F
00000042
0000000D
00000054
0000000D
00000019
00000002

7.2 STATUS

The status tool allows the user to view which processes are connected to the common

table. The status tool displays the name of the process, the machine on which the process

is running if different than the local node, the process’s pid number and message queue

number, and the status of the process either alive or dead. For remote processes the pro-

cess-id and the message-queue id are not listed in the table. Message server processes

and remote XPC processes do not show up in the common table.

The table displays

the knowledge the local node has on the complete system. When msg_server and XPC
processes are all running this table usually gives an accurate picture of all processes running
in the distributed UNIDAQ environment. See Figure 9 for an example of the status tool

output.

process_name
xpc
xpc_checker
collector
dump
recorder
logbook
runco
from_pipe
operator
analyzer

node

mhpbob

mhpbob

Figure 9. Status Output

pid
6310
6312
6314
6318
6323
0
6327
6329
0
6335

msgqid

78
84
2301
2152
1403
0

95
96

0

8

status

ALIVE
ALIVE
BUSY

DEAD
ALIVE
ALIVE
ALIVE
ALIVE
ALIVE
ALIVE

The status-tool is available on both VXWORKS and UNIX. On UNIX it is activated
by typing status, while on VXWORKS the status-tool first has to be loaded e.g.using the
Start-script. Afterwards it is activated by typing Status (notice the capital “S” here).

44

7.3 ASK

Ask is a tool which allows the user to send messages to a process from the shell
command line. The standard UNIX syntax for invoking a single message with ask is
ask process_ name command

“Process name” is the name of the process to which the command is directed, as stored
in the common table. “Command” is one of the user-level or system-level commands rec-
ognized by the process, complete with all of that command’s arguments. On VXWORKS
this command would look like:

ask “process name”, “command”

For example, one could issue the command
ask collector set eventsource=PSEUDO (UNIX)
ask “collector”, “set eventsource=PSEUDQO” (VXWORKS)

from the shell command line.

A second use of ask allows multiple messages to be sent with a single invocation of the
ask tool. In this form only the process_name only is supplied as argument to ask, eg, ask
collector. Upon issuing this command the user will then get a “collector>" prompt, and
several commands can then be sent to the collector process before exiting ask via QUIT,
STOP or <CTRL-C>. For example,

ask collector

collector> set eventsource=PSEUDO
collector> begin

collector> STOP

NOTE: Do not leave this form of the “ask” tool by typing EXIT; this command will be
sent to the process to which you are sending messages, causing it to stop itself.

7.4 RASK

The rask tool operates in the same fashion as the ask tool, except that it registers itself
in the Common Table as a working process. In this way the results of commands such as
“SHOW variable_name” will print results in the rask window instead of in the window in
which the specified process started.

Multiple copies of rask may run at the same time. If a live process by the name rask
already exists, it will pick a new name for itself.

The same restrictions on using the EXIT command as described for the ask tool apply
to the rask tool.

45

7.5 TELL

Tell is merely a soft link to the rask tool.

7.6 LOGVIEW

The logview tool is used to display the last portion of the current log.bookYYMMDD
file to the user’s terminal screen. The program will then loop, waiting for 15 seconds and
then checking the log file for modifications, and if any are found it will again display the
last portion to the screen. Exit is via <CTRL-C>. This tool is a convenient means of
monitoring the state of UNIDA(Q in a terminal window, whether or not murmur is running,
and only requiring that the logbook process is running.

If today’s log file does not exist, the tail of yesterday’s file will be printed once and the
program will wait for today’s file to appear. If neither file exists, the program exits with
an error message.

7.7 CAMDO

The CAMdo tool can be used to perform single CAMAC operations. CAMdo is an
interactive process which does not rely on or react to UNIDAQ message passing. When
running CAMdo several questions need to be answered. CAMdo performs 24 bit data
transfers. CAMdo is only available on HP, SUN and DECstations.

7.8 VMEDO

The VMEdo tool can be used to send single write and read commands to VME modules.
VMEdo is an interactive process which does not rely on or react to UNIDAQ message
passing. When running VMEdo several questions need to be answered, depending on the
machine you are using. It provides the possibility of sending single and multiple read /write
commands (eight or sixteen bits) to different sections in VME memory. VMEdo is only
available on HP and DECstation platforms.

7.9 UNI_CONFIG

Using point and click methods uni_config allows you to edit files and create executables
in such a way that UNIDAQ corresponds to your experimental needs. This process needs
to be run in the foreground, since it requires the user to enter his/her favorite editor.
Afterwards, a window pops up with several buttons (Nodefile, Start script, Runcontrol,
Operator, Collector, Dataview, Exit). Clicking the Exit button will stop uni_config, clicking
the Nodefile button will edit the nodefile, and clicking any of the other buttons will remove
this window and pop up a new window from which the appropriate files can be edited.
This new window also has an “exit” button; after clicking it the first window reappears.
Clicking a button labeled “make” will create a new (modified) executable of the currently
selected process in the $(USERUNIDAQ)/bin directory. The compilation result will show

in the window where you started uni_config.

46

7.10 STARTUP

The startup tool does nothing further than create the common table. All UNIDAQ
processes will do this automatically if the common table does not exist.

7.11 SHUTDOWN

The shutdown tool does nothing more than delete the common table. This is done
automatically during the various “Reset” procedures.

7.12 TO_PIPE

This tool is used to pipe NOVA buffers to its standard output. Such output can be
used to pipe the buffers to other processes such as those on other machines. A sample
usage is shown in Chapter 6 of this manual.

7.13 FROM_PIPE

This tool is used to pipe NOVA buffers from its standard input into the NOVA buffer
system, and the process is therefore a NOVA event source. Two sample uses of this tool
are shown in Chapter 6 of this manual.

7.14 NDMAKE

The ndmake tool is used when building the non-dynamically linked analyzer ana_nd.
Type the command “ndmake -h” to see the syntax of its usage.

7.15 EXAMPLE SCRIPTS AND PROGRAMS

Several sample scripts and programs are contained in the §USERUNIDAQ /examples
directory as instructional examples. These are detailed here.

7.15 a. example_script_a

This script runs NOVA, collector, recorder, UNIdump, and status to show how to talk
to them, using random numbers as events, and looking at the buffers.

7.15b. example_script_b

This script runs NOVA, collector, recorder, status, and the dynamically linked ana_d
showing how to dynamically link in and display histograms. Events contain random num-
bers.

7.15 c. example

File example.c is a well commented, sample program exemplifying how to pick up and
access NOVA buffers within the framework of the template, and how to make new user com-
mands and variables. A working version of the program appears in the $TOPUNIDAQ /bin
directory.

47

7.16 REPAIR

The repair tool allows the user to repair the table of process ids and message queue
numbers (the Common Table) along with other associated shared memories when a process
dies abnormally. It is suggested that a user runs the repair tool if a process dies before
issuing its exit handler and the zpc is not running. In fact, repair will exit with a message
if the zpc is happily running. Repair will only correct information for processes running
on the local node.

For all but the most simple test situations it is best to run the zpc and msg_server on
all nodes rather than running repasr.

7.17 RESETTING UNIDAQ

The best way to reset the Unidaq system is to use the Reset tool. This tool will kill all
the processes, clear and remove the message queues, shared memory and semaphores used

by the system. All machines listed in the §USERUNIDAQ/conf/nodefile file will be reset.

Reset_local is also available to reset only the node on which you are currently running.
The machine which is reset need not be listed in the nodefile file.

48

1.

2.

3.

INTRODUCTION ...t
1.1
1.2 Suggested Reading
1.3 Acknowledgements
RUNNING UNIDAQ V2.3
2.1 Setting Up ...l
2.1 a. Configuring
2.2 Starting the Software

2.3
2.4
2.5
2.6

SYSTEM PROCESS DESCRIPTIONS

3.1

3.2

3.3

3.4
3.5

CONTENTS

What is UNIDAQ? ...ttt e

2.2 a.

Command line options in starting processes

Stopping the Software

Interacting with the Software ...

Stopping Single Processes

Looking at Event Data

Collector Process

3.1a. User-Level Commands oo i,
3.1 b. User-Level Variables i i,
Analyzer Process i
3.2 a. The Dynamic Analyzer
3.2b. The Global Section Analyzer
3.2 c. The Non-Dynamic Analyzer
3.2d. Off-line analyzer differences,
Recorder Process
3.3 a. User-Level Commands oo i,
3.3b. User-Level Variables i i,

Dataview Process

Receiver Process

3.5 a.

User-Level Commands

i

O O - =~ O ot o

10
10
11
11
12
12
15
16
17
17
18
18
19
19
19

3.6 Run Control Process i 20

3.6 a. User Level Variables o i i 20

3.7 Operator Process e 21

3.7a. User Level Variables o o i 22

3.7b. Using the Operator Process oo 22

3.7 c. Modifying Run Parameters, 23

3.8 XPC Process ... e 24

3.8 a. User-Level Commandso i, 24

3.8 b. User Level Variables i, 25

3.9 XPC Checker ... 25

3.9a. User-Level Commandsc i i, 25

3.10 Logbook Processo 26

3.10 a. Logbook Commandscociiiiit i 26

3.10 b. Viewing the Loghook Files 27

3.11 UNIwish shell ... e 27

3.11 a. UNIwish as a UNIDAQ processcccoieiinnn. 27

3.11 b. Differences between wish and UNIwish 27

312 UNIVIEW o 28

4. MURMUR .. 29

4.1 Starting the Murmur Server it i 29

4.2 Stopping the Murmur Server 30

5. AN EXAMPLE SESSION: COSMIC RAY TESTS OF

SDC PROTOTYPE MUON DRIFT TUBES, 30
5.1 Hardware Configuration of the Test and Modifying

the Collector i e 30

5.2 Histograms and the Analyzer L. 34

5.3 Displaying Data with Dataview 36

5.3 a. Without TCL/TK i 36

il

53b. With TCL/TK ... s e 36

5.4 An Example Run of the Portable DAQ System 37
5.4 a. Interrupting a Process i 38
5.5 Playback of a Data File i i 39
5.5 a. Within the UNIDAQ environment 39
5.5 b. Playback without the UNIDAQ
ENVITOIIMENT oottt et e et e e 39
6. PASSING EVENT BUFFERS BETWEEN MACHINES

IN A DISTRIBUTED ENVIRONMENT i, 40
6.1 Using the Buffer Manager to Pass Data 40
6.2 Using Pipes to Pass Data i i, 40
6.3 Using recewver to Pass Data i i 41

6.4 Using UNIDAQ in a combined UNIX-VXWORKS
ENVITONINENT ...\ttt i e 42
7. ADDITIONAL TOOLS .. e e 43
7.1 UNIdump .. e 43
T2 Stabus .o 44
1.3 ASk o 45
T4 Rask ..o 45
1.0 Tell o e 46
T.6 LOgVIeW e e 46
7.7 CAMAO ..o 46
7.8 VMEdo ... e 46
7.9 Uniconfig ... 46
T10 Startup ... e 47
T7.11 Shutdown ... e 47
T.12 Lo PIPE oottt 47
T.13 Fromopipe ..o 47
714 Ndmake ... 47

v

7.15 Example Scripts and Programs 47

7.15 a. examplescript_a 47
7.15b. examplescript b 47
715 c. example ... 47
T.16 Repair ..o 48
7.17 Resetting UNIDAQ ... oo e 48

