

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
December 13, 1995

Software Considerations for the VIC64

Introduction
This application note provides the VIC64 software developer
with proven tips and examples for both configuring and oper-
ating the VIC64. The software described here is based on a
SPARC-based VMEbus card utilizing a VIC64. This board
was developed within Cypress Semiconductor as a test/eval-
uation vehicle for the VIC64 and the CY7C964.

This application note also discusses the configuration of the
CY7C964 VMEbus address compare functions.

Although this application note specifically addresses the
VIC64, virtually everything in this application note could also
be applied to the VIC068A. VIC64-only features are flagged
to notify the reader of items that are not applicable to the
VIC068A.

The source files vic.h, eval_bd.h, and blt_cmd.c, which are
described in this application note, are available through the
Cypress Semiconductor BBS (Bulletin Board System). These
files are contained within a file named “SAMPCODE.EXE.”

Related Documents

The reader may also wish to consult the following documents
for additional information:

• VIC068A/VAC068A User’s Guide

• VIC64/CY7C964 Design Notes

These documents are available through your local Cypress
Semiconductor field sales office.

Hardware Overview
The examples in this application note are based on an actual
design of a SPARC-based VIC64 evaluation VMEbus board
developed by Cypress Semiconductor. The following para-
graphs provide background for this hardware platform. Con-
tact your local field applications engineer regarding specific
hardware information on this board.

The Evaluation Board

This evaluation board includes the following features:

• Cypress’s CY7C611 embedded SPARC microprocessor

• Floating-point support

• 64 Kbytes to 4 Mbytes of private SRAM

• 64 Kbytes to 2 Mbytes of shared SRAM

• 512 Kbytes of EPROM for the embedded monitor program

• Performs D64 VMEbus transfers utilizing VIC64 and
CY7C964 devices

• MC68681 DUART

• 2 Kbytes of non-volatile storage

• Real-time clock

Evaluation Board Local Control Register (LCR)

The evaluation board contains a single 32-bit, dual-purpose
control register. When read, this register provides the memo-
ry size of the SIMM sockets as shown in Table 1.

The two bits for each SIMM contain one of the codes shown
in Table 2.

When written, this register provides control over the resourc-
es shown in Table 3.
.

Bits 0–15 provide control of 16 LEDs located on the edge of
the board. When a bit is cleared, the corresponding LED is lit.

Bits 16 and 17 provide control over the reset operations of the
VIC64. When bit 16 is cleared, the board’s state logic asserts
the IRESET* signal of the VIC64. When bit 17 is cleared, state
logic asserts the IPL0* signal of the VIC64, issuing a global
reset to the VIC64.

Bits 18-28 provide control over the most-significant eleven
VMEbus address lines. Prior to a VMEbus access, this bit
field is loaded with the most-significant eleven address bits.
An access is then made to a predefined address
(VME_BASE_ADRS) with the least-significant 21 VMEbus

Table 1. LCR Read Fields

Bits Socket

bits 0,1 SIMM socket 1 size (private)

bits 2,3 SIMM socket 2 size (private)

bits 4,5 SIMM socket 3 size (private)

bits 6,7 SIMM socket 4 size (private)

bits 8,9 SIMM socket 5 size (shared)

bits 10,11 SIMM socket 6 size (shared)

Table 2. SIMM Size Codes

Code Size

00 1M-byte SIMM

01 256K-byte SIMM

10 64K-bytes SIMM

11 Socket empty

Table 3. LCR Write Fields

Bits Function

bits 0–15: LEDs (lit when bit is clear)

bits 16,17: VIC64 reset

bits 18–28: VMEbus address (A31:21)

bits 29,30: VMEbus address size (ASIZ0-1)

bit 31: VMEbus data port size (WORD*)

Software Considerations for the VIC64

2

address lines obtained from the physical address of the trans-
action.

Bits 29 and 30 control the VIC64 ASIZ0/1 signals respectively.
These signals tell the VIC64 what address size to use.

Bit 31 controls the WORD* signal line. When clear, the VIC64
performs D16 VMEbus accesses; when set, D32.

Software Considerations
SPARCmon™

The embedded monitor program used on the evaluation
board is SPARCmon. SPARCmon is a commercial product
available from Sun Microsystems. SPARCmon consists of
source code modules for initialization, trap handling, float-
ing-point support, process control, remote debugging, I/O,
and a main command interpreter. Board-specific code such
as board initialization, test, and additional commands are in-
corporated into SPARCmon separately. This application note
does not address the specifics of SPARCmon, only
board-specific details as it relates to the VIC64.

Boot-Up

The flow of initialization for booting the evaluation board is
described in the following sections.

Disable Traps

Traps are disabled until resources exist to service them.

Initialize 7C611 Window Invalid Mask (WIM) and Trap Base
Register (TBR)

Reset the VIC64

This is discussed in detail later in this application note.

Test First 64 Kbytes of Private Memory

This provides us with tested memory for temporary storage to
perform subsequent boot tasks.

Set Up Initial Stack Frame Pointer and Enable Traps

With the first 64 Kbytes of memory tested, we may now ser-
vice traps. The trap vector table is located initially in EPROM
at address $0.

Initialize I/O

This consists of setting up I/O tables, structures and the
DUART itself.

Perform Board Diagnostics

The remainder of the board is checked, including

— EPROM checksum

— NVRAM checksum

— Determining amount of SRAM installed

— Testing remaining private SRAM

— Testing the shared SRAM

— Testing the NVRAM

— Testing the VIC64 (discussed later)

— Testing the DUART

— Configuring board local memory map

Local memory map is created with regions for

— Monitor variables (DATA)

— Uninitialized monitor variables (BSS)

— The relocated trap table

— User memory area

— User stack (STACK) area

Clear User Memory Areas

The user areas are “cleared” to a predefined value.

Relocate the Trap Table in EPROM to SRAM

This speeds up trap table accesses and makes the table mod-
ifiable. The TBR is adjusted after the table is moved.

Configure VIC64

This is discussed in detail later in this application note.

VIC64 Initialization and Test
VIC64 Register Accesses

All of the VIC64’s internal registers are 8 bits wide but occupy
32 bits of address space. Specific address and size informa-
tion must be presented to the VIC64 in order for the VIC64 to
accept the register access.

When the VIC64 has been selected for a register access
(CS*, PAS*, and DS* are asserted to the VIC64), the VIC64
checks the SIZ1/0 and LA[1:0] signals to insure proper byte
orientation. This is because the VIC64 is only connected to
the lower 8 data lines of the local data bus and the data must
be aligned as such.

Table 4 shows the valid combinations of SIZ1/0 and LA[1:0]
that must be present for the VIC64 to accept the register ac-
cess. The VIC64 mimics the Motorola CISC processors in
that the SIZ and LA combinations for it are the same as for
the VIC64. The SIZ codes for the CY7C611 are not the same
and translation circuitry is required.

If Table 4 is not satisfied, the VIC64 ignores the attempted
cycle by not reading or writing the information and not ac-
knowledging the cycle (does not assert DSACKi*).

VIC64 Reset

The evaluation board issues a power-on reset to the VIC64
via the LCR. The LCR contains two bits for VIC64 reset. Bit
16 controls the assertion of IRESET* for the purposes of per-
forming a internal reset. Bit 17 controls the assertion of IPL0*,
which is used in conjunction with IRESET*, to perform a glo-
bal reset. The VIC64 requires that a global reset be issued at
power-up. The SPARC assembler code in Figure 1 performs
a VIC64 global reset.

This routine is written in assembler language because it must
be a “leaf” routine. That is, it must not use the stack in any way
since no stack exists yet. Calls from a high-level language or
calling an additional routine would almost certainly use the
stack.

Table 4. VIC64/068 D(7:0) Data Alignment

SIZ1 SIZ0 LA1 LA0 Size

0 1 1 1 Byte

1 0 1 0 Word

0 0 0 0 Longword

1 1 1 1 3-Byte

Software Considerations for the VIC64

3

Notice that the VIC64 is reset in stages. First the IRESET*
signal is asserted to the VIC64 by clearing bit 16 of the LCR.
The next instruction clears bit 17 to assert IPL0*. The reason
that these are performed in separate instructions is that suf-
ficient time must be allowed for the assertion of IRESET* to
switch the IPL0* from an output to an input. Next, the IPL0*
signal is removed, then the IRESET* signal is removed, in
separate instructions. This is done to insure that the VIC64
200-ms reset timeout is observed. If they were removed si-
multaneously, this timeout may not be observed and the reset
would complete immediately. Refer to section 12.1 of the
VIC068/VAC068 User’s Guide for more details on VIC reset.

VIC64 Test

To determine if the VIC64 is present and has been reset prop-
erly, the VIC64 test routine performs write-read-verify cycles
to the VIC64 ICR0-5 registers. At this time, the VIC64 version
register is read to determine the mask revision. The mask
register reads $00, and any VIC64 values above $F0 indicate
a VIC068 is installed. This may or may not be acceptable for
specific applications.

VIC64 Configuration

The configuration of the VIC64 is accomplished by writing the
VIC64 registers to desired values. The board stores these
predetermined values as a structure located in the NVRAM
at boot-up. The VIC64 configuration routine reads these val-
ues and stores them into the appropriate VIC64 registers.
This way, the configuration of the VIC64 is not hard-coded
and may be modified by simply changing the values in
NVRAM and calling a VIC64 configuration routine.

VIC64 Address Spaces

In VMEbus systems, each VMEbus board typically has its
own unique address spaces within the total 4-Gbyte VMEbus
addressing range. These regions may consist of various
sub-regions including:

• A32, A24, and/or A16 regions

• D32 and/or D16 regions

• Interprocessor communication regions

In addition to the VMEbus address spaces, the local proces-
sor within each board works with a local address space that
may include:

• Private memory

• Shared memory (shared with the VMEbus)

• UARTs

• Interrupt acknowledge

• Board control registers

• The VMEbus

• Control registers (including VIC64)

These local areas may or may not be visible to other VMEbus
modules. It is not uncommon for shared memory to be the
only local resource available to other VMEbus modules. This
is the case for this board. The local addresses and the VME-
bus addresses to this shared memory would almost certainly
be different. Some type of secondary decode or address
translation is necessary in these instances. In the examples
given in this application note, the header file eval_bd.h de-
fines the local address map used for the board.

The VIC64 does not directly support VMEbus accesses to
their internal registers with the exception of the Interproces-
sor Communication registers. It is possible via external hard-
ware to make all VIC64 registers visible to the VMEbus (see
Cypress’s application note titled “Using the VIC068A Without
a Processor”). If a VAC068A is used, the local VIC64 (the
VAC068A is not compatible with the D64 operations of the
VIC64, but can be used if D64 operation are not performed)
register region is fixed at addresses FFFCxxxx to FFFDxxxx.
As a minimum, sufficient space must always be allotted for the
58 longwords of VIC64 registers.

VMEbus addressing through the LCR

As noted earlier, bits 18–28 of the LCR provide control over
the most significant eleven VMEbus address lines. Therefore,
a VMEbus access may consist of two parts: loading the LCR
with the proper value, and performing the actual transfer to
the VMEbus address location. This location consists of a fixed
address in combination with the lower 21 bits of the VMEbus
address.

As an example, assume a VMEbus A32, D32 read access is
desired from the VMEbus address 0x38004000 and that the
LEDs should remain clear (see Figure 2). A value of
0xA703FFFF should be written into the LCR. If the VMEbus
address space on the local address map is 0xE00000
(VME_BASE_ADRS), the local address should be 0xE04000
(0xE00000 + least significant 21 bits of VMEbus address).

Figure 1. VIC64 Reset

#include <eval_bd.h> ; Needed for LCR pointer

set LOCAL_CONTROL_BASE_ADRS, %l6 ; This symbol points to the LCR
set 0xffffffff, %l2
st %l2, [%l6] ; ”clear” LCR
set 0xfff7ffff, %l2
st %l2, [%l6] ; Assert IRESET*
set 0xfffcffff, %l2
st %l2, [%l6] ; Assert IPL0*
set 0xfff7ffff, %l2
st %l2, [%l6] ; Remove IPL0*
set 0xffffffff, %l2
st %l2, [%l6] ; Remove IRESET*

Software Considerations for the VIC64

4

)

An addressing scheme of this sort makes the entire 4-Gbyte
range of the VMEbus addressable by the board. A disadvan-
tage is that the LCR must be written for any VMEbus transac-
tion is in a different 2-Mbyte address spaces from the previous
VMEbus transaction. An example of a function that would re-
turn the proper address is shown in Figure 3.

An example function that returns the proper LCR value could
be as shown in Figure 4.
CY7C964 Address Comparator Configuration

The evaluation board uses the CY7C964 as the VMEbus
slave address comparator. The address comparator consists
of two registers: the mask register and the compare register.
The compare register is loaded with the base address of the

slave address. The mask register is loaded with a value that
determines which bits of the address should be compared
with the value in the compare register. This defines the size
of the address region. A zero in a bit enables the comparison
of the corresponding bit in the compare register to the VME-
bus address bit.

For example, if there are 4 Mbytes of shared memory and the
VMEbus slave range is to start at address 0xC00000, the
following values should be loaded into the CY7C964 regis-
ters:

Compare Register: 0x00C00000
Mask Register: 0x003FFFFF
.

Figure 2. VMEbus A32, D32 Read Access

1 0 1 0 / 0 1 1 1 / 0 0 0 0 / 0 0 1 1 / 1 1 1 1 / 1 1 1 1 / 1 1 1 1 / 1 1 1 1

WORD*

ASIZ0/1 VMEbus ADDRESS
A[31:21]

LEDs (CLEAR)

VIC64 RESET

Figure 3. VMEbus Address Calculation

/* eval_bd.h includes the following:
 typedef unsigned int WORD
 #define VME_BASE_ADRS 0xE00000 */

#include <eval_bd.h>

#define VMEADRSMASK 0x001FFFFF

WORD *CalcVMEadrs (adrs)
WORD *adrs
{
WORD VMEadrs;

VMEadrs = (WORD) adrs;
VMEadrs &= VMEADRSMASK; /* mask off upper 11 bits of address */
VMEadrs |= VME_BASE_ADRS; /* overlay VMEbus address for evaluation board */

return ((WORD *) VMEadrs);
}

Software Considerations for the VIC64

5

Compiling Considerations

Because the monitor used for the evaluation board is
EPROM-based, certain considerations are noted, namely:

1. All monitor sections that can be read-only are linked such
that they occupy a contiguous section of EPROM. This
may be done with the -R option of a UNIX cc compiler. The
-R option merges the code segment TEXT with the initialized
data segment DATA.

2. Because the DATA segment is now located in EPROM, any
initialized data is now read-only and is not modifiable. This
suggests that variable declarations do not initialize the vari-
able, as shown in Figure 5.

3. The uninitialized data segment BSS and the stack seg-
ment STACK must be located in RAM.

Example VIC64 Software Building Blocks
The following are examples of code that were used for the
VIC64-specific routines on the board.

vic.h

vic.h is a header file that defines useful macros and
VIC64-register-related constants. First, the macro VIC is de-
fined, which returns an address to a VIC64 register. The ar-
gument to this macro is the number of the register. These
numbers start from 0 (VIICR) and end with 57 (BTLR2) for the
VIC64 (56 for the VIC068). These numbers are not the ad-
dress of the register. Next, constants are defined that assign
these numbers to the register names themselves. And lastly,
a unique VIC64 register identifier is given to each register so
that its address and contents can be obtained directly. A sim-
ilar macro is defined for setting and clearing the Interproces-
sor Communication (IPC) switches. This IPC macro needs,
as an argument, the starting address of the VMEbus IPC ar-
eas of interest.

As examples, consider the code fragment shown in Figure 6,
which illustrates the VIC_xxx macros.

In addition, numerous other constants are defined that aid in
manipulating the various bit fields within the registers them-
selves. These constants are separated by register. Also, the
last character of the constant name may consist of a under-
score (_) or lower case letters that indicate something about
the constant or the bits. Table 5 summarizes these charac-
ters.

Figure 4. LCR VMEbus Address Calculation

/* eval_bd.h includes the following:
 typedef unsigned int WORD */

#include <eval_bd.h>

#define LCRADRSMASK 0xFFE00000
#define LCRMASK 0xE003FFFF
#define LCRSHIFT 3

WORD *CalcLCR (adrs, LCReg)
WORD *adrs, LCReg;
{
WORD TempAdrs;

TempAdrs = (WORD) adrs; /* convert WORD pointer to WORD */
TempAdrs &= LCRADRSMASK; /* mask off lower 21 address bits */
TempAdrs >>= LCRSHIFT; /* shift over by 3 */
LCReg &= LCRAMSK; /* clear out existing address in LCReg */
LCReg |= TempAdrs; /* overlay new address onto LCReg */

return (LCReg);
}

Figure 5. Proper Variable Initialization

/* NO!!! */
WORD *VMEadrs = (WORD *) 0x400000;

/* Yes!!! */
WORD *VMEadrs;
VMEadrs = (WORD *) 0x400000;

Software Considerations for the VIC64

6

.

eval_bd.h

eval_bd.h is a header file that contains board-specific con-
stants. These constants also include the local address map
of the board, including those resources described in Table 6.

In addition, other types and constants are defined, including
individual DUART registers, power-of-2 constants, byte-ex-
traction macros, and some NVRAM macros.

A Generic Block Transfer Utility
blt_cmd is a generic, command-line driven program that en-
ables the user to perform almost every conceivable block
transfer operation using the VIC64 or the VIC068. One nota-
ble exception is allowing the VIC64 to interrupt when the block
transfer is complete. blt_cmd is meant mainly to be used as a
vehicle for board and code testing.

Configuration is provided by the command-line arguments
outlined in Table 7.

Figure 6. Using the “VIC” Macros

#include <vic.h> /* VIC macros located here */
#include <eval_bd.h> /* typedef for BYTE (unsigned char) */

BYTE TempStorage;
BYTE *TempStoragePtr;

TempStorage = *VIC_BTCR; /* read contents of BTCR */
VIC_SS0CR0 = TempStorage; / store contents of SS0CR0 */
TempStoragePtr = VIC_TTR; /* read pointer to TTR */
ICF_ICGS0_SET (ICF_BASE); /* set ICGS0 */

Table 5. vic.h Constant Preceders

Suffix Meaning

_ Implies a bit field which is cleared

r Implies read-only bit(s)

m Implies a masking value for bit(s)

Table 6. Local Address Symbols

Memory Area Privilege Symbol

EPROM Read/Write ROM_BASE_ADDRESS

Status Register (LCR) Read-Only STATUS1_BASE_ADRS

Control Register (LCR) Write-Only LOCAL_CONTROL_BASE_ADRS

DUART Read/Write M68681_BASE_ADRS

NVRAM Read/Write NVRAM_BASE_ADRS

7C964 Mask Register Write-Only BILC_M_BASE_ADRS

7C964 Compare Register Write-Only BILC_C_BASE_ADRS

Interrupt Acknowledge Read-Only INT_ACK_BASE_ADRS

VIC64 Read/Write VIC_BASE_ADRS

VMEbus Read/Write VME_BASE_ADRS

Private SRAM Read/Write BANK1_BASE_ADRS

Shared SRAM Read/Write BANK2_BASE_ADRS

Table 7. Command-Line Arguments

Argument Default[1] Function

-6 Performs D64 transfers (requires VIC64 device).

-3 √ Performs D32 transfers.

-a[address] 0xC00000 Sets local starting address for which data will be read, for VMEbus write block transfers or
written for VMEbus read block transfers to address.

-A[value] Disabled Sets user-defined AM code that is to used for block transfers to value.

-b[value] 0x200 Sets minimum value for byte count to value. If the -ib value is 0 (increment byte count) the fixed
byte will be set to value.

Software Considerations for the VIC64

7

-B[value] 0xFFFC Sets maximum value for byte count to value. Not used if -ib value is set to 0.

-cl Enables local boundary crossing.

-cL √ Disables local boundary crossing.

-ct Enables 2-kbyte VMEbus boundary crossing (implies -cv).

-cT √ Disables 2-kbyte VMEbus boundary crossing.

-cv √ Enables VMEbus boundary crossing.

-cV Disables VMEbus boundary crossing.

-d Enables the dual-path option but does not perform interleave master cycles (see -p).

-D √ Disables the dual-path option.

-e Sets the release mode to RWD.

-E √ Sets the release mode to ROR.

-f Enables DRAM refresh.

-F √ Disables DRAM refresh.

-ib[value] 0 Set the byte count increment value to: value * size of the operand.

-ii[value] 0 Sets the interleave increment value to value.

-iu[value] 0 Sets the burst count increment value to value.

-i[value] 0 Sets minimum value for interleave to value. If the -ii value is 0 (increment increment count) the
fixed interleave value will be set to value.

-I 0xF Sets maximum value for interleave to value. Not used if -ii value is set to 0.

-k √ Enables data set-up before every block transfer and data checking after every block transfer.

-K Disables data set-up before every block transfer and data checking after every block transfer.

-l[value] 1 Sets the number of block transfers to perform to value. If value is set to 0, program will loop
forever.

-m Enables the clearing of the BLT enable bit (BTCR[4]) during the first interleave (VIC64 only).

-M √ Enables the clearing of the BLT enable bit (BTCR[4]) after the block transfer is completely
finished.

-p Enables the dual-path feature and performs VMEbus master cycles during the interleave
period.

-P √ Disables the performing of interleave master VMEbus cycles. Leaves the dual-path feature
enabled.

-r √ Enables BLT reads.

-R Disables BLT reads.

-s[value] 3 Sets the VMEbus request level to value.

-t √ Enables the “enhanced” BLT turbo mode (VIC64 only).

-T Disables the “enhanced” BLT turbo mode.

-u[value] 0 Sets minimum value for the burst count to value. If the -iu value is 0 (increment burst count)
the fixed burst count will be set to value.

-U[value] 0x3F Sets maximum value for burst count to value. Not used if -iu value is set to 0.

-v[value] 0xDEADC0DE Sets the value to which destination memory will be set to value.

-w √ Enables BLT writes.

-W Disables BLT writes.

-x Restores all options to their default states.

[address(es)] 0x200000 VMEbus starting address(es) for block transfer. Up to five may be specified.

Note:
1. The check mark indicates the default of two preceding arguments.

Table 7. Command-Line Arguments (continued)

Argument Default[1] Function

Software Considerations for the VIC64

8

All mutually exclusive options are shown without a divider be-
tween the options. If two mutually exclusive options are de-
fined, the last one in the command line will take precedence.
The state of these options are saved in static variables such
that once a configuration is entered, the whole command
string will not have to be retyped. Only those options that
need to be changed will have a new option. Using the -x op-
tion will restore all options to their default state.

Unsupplied Functions

blt_cmd.c contains one function, lib_atohex(), that is not sup-
plied. It is a library routine supplied with the SPARCmon
source. Any ASCII-to-hex converter could be used with small
modifications to blt_cmd.c. lib_atohex() is outlined in Figure 7.

Program Flow

Figures 8, 9, and 10 illustrate the flow of blt_cmd.c.

Example Operations

The following examples show how blt_cmd can be used to
initiate a variety of block transfers.

blt_cmd -l0 -6 -ii1 -aC800000 D800000

This command line would perform D64 read and write block
transfers indefinitely using local address 0xC800000 and
VMEbus address 0xD800000. After each read/write block
transfer, the interleave period is incremented by 1. All other
options would remain at their default values.

blt_cmd -3 -W -iu1 D800000 E800000

This command line would perform D32 read block transfers
indefinitely (-l0 still in effect) using local address 0xC800000
(defined last time) and VMEbus addresses 0xD800000 and
0xE800000. After each read block transfer, the burst count
and the interleave period (still defined from last time) is incre-
mented by 1. All other options would remain at their default
values.

blt_cmd -6 -w -ib1 -K -p D800000

This command line would perform D64 read and write (writes
are re-enabled with -w) block transfers indefinitely using local
address 0xC800000 and VMEbus address 0xD800000. After
each read/write block transfer, the byte count would be incre-
mented by 8 (1 * 8 bytes/transfer). Data checking is sup-
pressed. Master cycles are performed in the interleave peri-
od. All other options would remain at their default values.

blt_cmd

Performs block transfers using the same parameters as the
last time invoked.

Figure 7. atohex() prototype

#include <atohex.h>
/* needed for lib_atohex return
 values */

lib_atohex (string, hexvalue)
char *string;
unsigned long *hexvalue;

/*
inputs:
string character to be converted
Outputs:
hexvalue pointer to the hex result

Return value:
SUCCEEDED valid number
(otherwise) illegal hex number
*/

Software Considerations for the VIC64

9

Figure 8. blt_cmd Flow

Software Considerations for the VIC64

10

Figure 8. blt_cmd Flow (continued)

Software Considerations for the VIC64

11

Figure 9. blt_cmd Read Flow

Software Considerations for the VIC64

© Cypress Semiconductor Corporation, 1995. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Figure 10. blt_cmd Write Flow

