
TitlePage - 8091078_AN001_01
Tundra Semiconductor Corporation

Migrating a VIC64/VIC068A Design
to the SCV64™

Document Number: 8091078_AN001_01
Document Type: Design Note
Document Status:Final
Release Date: February 2003

Trademarks

TUNDRA is a registered trademark of Tundra Semiconductor Corporation (Canada, U.S., and U.K.). TUNDRA,
the Tundra logo, and Silicon Behind the Network, are trademarks of Tundra Semiconductor Corporation. All
other registered and unregistered marks (including trademarks, service marks and logos) are the property of their
respective owners. The absence of a mark identifier is not a representation that a particular product name is not a
mark.

Copyright

Copyright © February 2003 Tundra Semiconductor Corporation. All rights reserved.
Published in Canada

This document contains information which is proprietary to Tundra and may be used for non-commercial
purposes within your organization in support of Tundra products. No other use or transmission of all or any part
of this document is permitted without written permission from Tundra, and must include all copyright and other
proprietary notices. Use or transmission of all or any part of this document in violation of any applicable
Canadian or other legislation is hereby expressly prohibited.

User obtains no rights in the information or in any product, process, technology or trademark which it includes or
describes, and is expressly prohibited from modifying the information or creating derivative works without the
express written consent of Tundra.

1. Migrating a VIC64/VIC068A Design
to the SCV64

• “Overview” on page 4

• “Feature Differences” on page 5

• “Signal Description” on page 6

• “Registers” on page 12

• “DMA Operation” on page 21

• “Interfacing to the VMEbus” on page 25

• “Interfacing to the Local Bus” on page 30

• “Feature Comparisons” on page 34

• “Resets” on page 40

• “VICx and SCV64 Comparison Summary” on page 42

• “Conclusion” on page 44
Migrating a VIC64/VIC068A Design to the SCV64 Design Note 3
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.1 Overview
This document outlines the differences between Cypress VICx (VIC64 and
VIC068A) and the Tundra SCV64 device. The VICx and the SCV64 devices are
both VME64 compliant devices. However, they both have distinct features that are
discussed in detail in this document.

The Single Chip VME64 interface component (SCV64) is one of Tundra
Semiconductor’s VMEbus System Interconnect Component. It provides a high
performance 64-bit VMEbus interface in a single device. The SCV64 results from a
four year development effort in VMEbus interface design which produced a
VME64 Specification compliant device. Major Strengths of the SCV64 include a
built in DMA controller, local bus burst modes and a FIFO architecture which
allows the chip to decouple VMEbus transfers from the local bus. Other strengths of
the SCV64 include a rich pool of features and operational modes which allow the
user to tailor the VMEbus interface to a variety of data passing environments. The
SCV64 is a full fledged VMEbus component with integrated VMEbus system
controller capability, interrupt controller, DMA controller, and other features
inherent to VME64.

The VIC64 and VIC068A are members of the industry standard Cypress VIC
family of VMEbus interface products which are now obsolete and are not
recommended for new designs1. The VIC64 provides a 64-bit interface, in addition
to the 32-bit and 16-bit data bus cycles provided by the VIC068A. The primary
benefit of using the VIC64 is that it provides a single chip 64-bit interface in
addition to some feature enhancements over the VIC068A. Like the VIC068A, the
VIC64 contains all the features required to function either as a slave, a master, or
system controller. It provides a built in interrupt controller, a DMA controller, and
DRAM refresh controller. Throughout this discussion, the VIC64 and VIC068A
will be discussed hand in hand and referenced as the VICx.

1. Refer to the Cypress website for details at http://www.cypress.com

Tip
This document assumes that the reader is familiar with the Motorola
Processor 68K bus protocol and the VME64 bus protocol as defined by
the ANSI/VITA VMEbus specification.

References for this Design Note can be obtained from the Cypress
VMEbus Interface Handbook published in May 1996 and the SCV64
VMEbus Interface Components Manual (document number
8091078_MA001_01).
Migrating a VIC64/VIC068A Design to the SCV644
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.2 Feature Differences
The Tundra SCV64 and Cypress VICx devices are both VMEbus to MC68030 local
bus bridge devices however, they have the following feature and operational
differences:

• Data path: The SCV64’s internal architecture is FIFO based. Write posting to a
FIFO on both the transmit and receive data paths allows decoupled operation.
The VICx only provides a single register for write posting. Decoupled
architecture is a significant advantage as opposed to coupled architectures.
Decoupled mode provides a mechanism whereby the initiating master does not
control the transfer. Data is stored into the SCV64’s internal FIFO’s while the
processing master is free to perform other tasks. In a coupled architecture, any
initiating master must wait for a data transfer to complete before initiating
another data transfer. Decoupled mode maximizes throughput and reduces bus
utilization on both the source and target card involved in the transfer.

• Register Access: The SCV64 registers can be accessed from the VMEbus and
the local bus. The VICx registers can be accessed from the local bus; only the
Inter-processor Communication Facilities registers can be accessed from the
VMEbus through the ICFSEL* signal.

• Block Transfer generation: In the VIC64, the CPU can control block transfers
to the VMEbus via software. The SCV64 does not have this capability however
this can be done via the SCV64’s DMA controller.

• Reflected Cycles: The SCV64 supports reflected cycles. This allows the card to
write to a VME address on itself. The SCV64 will reflect that cycle back onto
the card. The VICx does not support this and signals a VMEbus BERR*.

• Rescinding DTACK*: The VIC64 supports rescinding of the DTACK* signal
whereby the signal is actively driven high at the end of a data transfer cycle.
The SCV64 does not support this feature. Note that rescinding of DTACK* is
an optional feature within the VME64 specification.

• Address Decode: The SCV64 has a built in VMEbus address decode. The VICx
requires external address decode. Both the SCV64 and the VICx devices
require external address decode on the local bus.

• Auto Syscon detection: During Power up, the SCV64 will monitor the BGIN3*
pin (as per the VME64 specification) do determine system controller
functionality. The VIC64 requires a jumper to be installed prior to slot 1
insertion to enable system controller functionality.
Migrating a VIC64/VIC068A Design to the SCV64 5
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.3 Signal Description
The following tables show all the VMEbus, local bus, and miscellaneous signals in
both the VICx and SCV64 devices. Note that all signals appended with “*” or
with “_” indicate an active low signal. N/A indicates that it is not applicable in
either the VIC devices or the SCV64.
Migrating a VIC64/VIC068A Design to the SCV646
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.3.1 VMEbus Signals

Table 1: VMEbus Signals

Signal Name VIC068A/VIC64 Signal Name SCV64

Description Description

D[7:0] VMEbus Data Lines VDATA[31:0] VMEbus Data Lines

A[7:0] VMEbus Address Lines VADDR
[31:0]

VMEbus Address Lines

AM[5:0] VMEbus Address Modifiers VAM[5:0] VMEbus Address Modifiers

BG[3:0]OUT* VMEbus Grant Output BG[3:0]OUT* VMEbus Grant Output

BG[3:0]IN* VMEbus Grant Input BG[3:0]IN* VMEbus Grant Input

BR[3:0]* VMEbus Request Lines BR[3:0]* VMEbus Request Lines

IACK* VMEbus Interrupt Acknowledge IACK* VMEbus Interrupt Acknowledge

IACKIN* VMEbus Interrupt Acknowledge Input IACKI* VMEbus Interrupt Acknowledge
Input

IACKOUT* VMEbus Interrupt Acknowledge
Output

IACKO* VMEBus Interrupt Acknowledge
Output

IRQ[7:1]* VMEbus Interrupt Requests IRQ[7:1]* VMEbus Interrupt Request

BBSY* VMEbus Busy BBSY* VMEbus Busy

BCLR* VMEbus Clear BCLR* VMEBus Clear

AS* VMEbus Address Strobe VAS_ VMEbus Address Strobe

DS[1:0]* VMEbus Data Strobes VDS[1:0]_ VMEbus Data Strobes

DTACK* VMEbus Data Transfer Acknowledge DTACK* VMEbus Data Transfer
Acknowledge

BERR* VMEbus Error BERR* VMEbus Error

LWORD* VMEbus Long Word VLWORD_ VMEbus Longword Data Transfer
Size

WRITE* VMEbus Data Direction VWR_ VMEbus read/write line

SYSCLK VMEbus System Clock SYSCLK VMEbus System clock

SYSRESET* VMEbus System Reset SYSRST* VMEbus System Reset

ACFAIL* VMEbus ACFAIL L7IACF Vmebus ACFAIL*

SYSFAIL* VMEbus SYSFAIL SYSFAIL* VMEbus SYSFAIL
Migrating a VIC64/VIC068A Design to the SCV64 7
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
N/A VADDROUT VMEbus Address Transceiver
Control

N/A VDATAOUT VMEbus Data Transceiver Direction
Control

N/A VSTRBOUT VMEbus Address and Data Strobe
Direction Control

N/A RETRY*/
VRMC_

Proprietary VMEbus retry output and
VMEbus Retry input.

Table 1: VMEbus Signals

Signal Name VIC068A/VIC64 Signal Name SCV64

Description Description
Migrating a VIC64/VIC068A Design to the SCV648
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.3.2 Local Signals

Table 2: Local Signals

Signals VIC068A/VIC64 Signals SCV64

Description Description

LD[7:0] Local Data lines KDATA[31:0] Local Data bus lines

LA[7:0] Local Address lines KADDR[31:0] Local Address lines

RESET* Reset Output LRST_ Local Reset Output

HALT* Halt Status KHALT_ CPU Halt Signal

PAS* Physical/Processor Address
Strobe

KAS_ Local Address Strobe

DS* Processor Data Strobe KDS_ Local Data Strobe

DSACK[1:0]
*

Processor Data Size Acknowledge KDSACK[1:0]_ Local Bus data transfer and size
acknowledge

LBERR* Local Bus Error KBERR_ Local Bus Error

R/W* Local Direction Signal KWR_ Local Write signal/Direction Signal

RMC* Read/Modify/Write KRMC_ Local Read/Modify/Write

CS* VIC Chip Register Select SCV64SEL_ SCV64 Chip Register Select

SIZ[1:0] Data Transfer Size KSIZE[1:0] Local Bus Data Transfer

FC[2:1] Function Code KFC[2:0] Local Function codes

LBR* Local Bus Request KBRQ_ CPU Bus Request

LBG* Local Bus Grant KBGR_ CPU Bus grant

IPL[2:0] Interrupt Priority Level KIPL[2:0]_ CPU Interrupt Priority Levels

LIACKO* Local Interrupt Autovector KAVEC_ Local Interrupt Autovector signal

LIRQ[7:1]* Local Interrupt Requests LIRQ[5:0_] Local Interrupt Requests

MWB* Module wants bus VMEOUT Local VMEbus Chip Select

FCIACK* Interrupt Acknowledge LIRQ2_/KIACK_ Local Interrupt request 2 or Local IACK
Decoding

ICFSEL* Interprocessor Communications
Facilities Chip Select

N/A

ASIZ[1:0] Local Address Size KSIZE[1:0] Local Address Size
Migrating a VIC64/VIC068A Design to the SCV64 9
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
SCON*/D64 System Controller Status N/A

IRESET* Internal Reset Input N/A

CLK64M 64 Mhz Clock Input N/A

WORD* D16/D32 Control N/A

SLSEL[1:0] Slave Select N/A

DEDLK* Deadlock Status N/A

BLT* Block Transfer Status N/A

ABEN* VMEbus Address Buffer Enable N/A

LADO* Latch Outgoing VMEbus Address N/A

LADI* Latch Incoming VMEbus Address N/A

LEDO Latch Outgoing VMEbus Data N/A

LEDI Latch Incoming VMEbus Data N/A

DDIR Local Data Direction N/A

DENIN1* Local Data Enable (Upper Word) N/A

DENIN* Local Data Enable (Lower Word) N/A

SWDEN* Swap Local Data Enable N/A

DENO* VMEbus Data Buffer Enable N/A

ISOBE* Isolation Buffer Enable N/A

LAEN* Local Address Buffer Enable N/A

N/A KBGACK_ Local Bus Grant Acknowledge

N/A EXTRST_ External Reset Input used to reset device

N/A KCLK Local clock Input

N/A L7IMEM_ Local Level 7 Interrupt

N/A L7INMI_ Local Level 7 Interrupt

N/A LBGR1_ Local Bus Grant when in Arbiter Mode

N/A LBRQ1_ Local Bus Request from a local requester

Table 2: Local Signals

Signals VIC068A/VIC64 Signals SCV64

Description Description
Migrating a VIC64/VIC068A Design to the SCV6410
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
N/A LIACK[5:4]_ Local Interrupt Acknowledge

N/A LMINT_ Location Monitor Interrupt

N/A VSBSEL_ VSB Bus Select

N/A RAMSEL_ Memory Select Signal

N/A SYSFLED_ SYSFAIL LED Driver

N/A TICK_ Tick Timer

N/A TMODE[1:0] Test Mode Inputs (Not Used/Tied to
Ground)

N/A VMEINT_ VMEbus Activity Interrupt

N/A WDOG_ Watch Dog Timer

N/A BAUDCLK Baud Clock output used to generate baud
rate Clocks

N/A BIMODE Bi Mode Signal

N/A BIREL_ Bi Mode Release Signal

N/A BITRIG_ Bi Mode Trigger Signal

N/A C14US 14us clock generated from the C32Mhz
clock

N/A C8MHZ 8 Mhz general purpose clock output

N/A C32MHZ 32 Mhz clock used to clock signals and
generate VMEbus state machine timing

N/A JTCLK JTAG Test Clock (Not Used)

N/A JTDI JTAG Test Data Input (Not Used)

N/A JTDO JTAG Test Data Output (Not Used)

N/A JTMS JTAG Test Mode Select (Not Used)

N/A PWRRST* Power On Reset

Table 2: Local Signals

Signals VIC068A/VIC64 Signals SCV64

Description Description
Migrating a VIC64/VIC068A Design to the SCV64 11
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.4 Registers
Both the SCV64 and the VICx devices have unique control and status registers
which are accessed using two distinct methods. The VICx internal registers can be
accessed from the local bus. Only the Inter-processor Communications Facilities
(ICF) registers can be accessed from the VMEbus by means of the ICFSEL* signal.

The SCV64 has an added feature which allows all the device’s internal registers to
be accessed from the VMEbus.

For more information on specific bit locations and bit functionality refer to the
SCV64 VMEbus Component Interface Manual and the Cypress VMEbus Interface
Handbook.
Migrating a VIC64/VIC068A Design to the SCV6412
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.4.1 Device Register Maps
The following sections independently discuss the Control and Status Register
(CSR) space for the VICx device and the SCV64 device.

1.4.1.1 VIC64/VIC068A Register Map
The VIC068A contains 58, 8-bit internal registers addressable from the local bus
interface only. Although registers in the VIC068A are 8-bit, the VIC068A always
acknowledges a register access with both DSACK0* and DSACK1* asserted
because the registers need to be addressed on longword boundaries.

There are minor differences between the VIC64 and the VIC068A registers to
differentiate the 32-bit only VIC068A and the 64-bit VIC64 device. To allow
compatibility with the VIC64, within the VIC068A all reserved bits must have a 0
written to them.

The VIC068A is added to the description because the VIC64 is an
extension to the VIC068A device to allow 64-bit operation on the
VMEbus.

Table 3: VIC64/VIC068A Register Map

Register Address Name Description

0x03 VIICR VMEbus Interrupter Interrupt Control Register

0x07-0x1F CICR1-7 VMEbus Interrupt Control Register 1-7

0x23 DMASR DMA Status Register

0x27-0x3F LICR1-7 Local Interrupt Control Registers 1-7

0x43 ICGSICR ICGS Interrupt Control Register

0x47 ICMSICR ICMS Interrupt Control Register

0x4B EGICR Error Group Interrupt Control Register

0x4F ICGSVBR ICGS Vector Base Register

0x53 ICMSVBR ICMS Vector Base Register

0x57 LIVBR Local Interrupt Vector Base Register

0x5B EGIVBR Error Group Interrupt Vector Base Register

0x5F ICSR Interprocessor Communications Switch Register

0x63-0x73 ICR0-4 Interprocessor Communications Registers 0-4

0x77 ICR5 Interprocessor Communications Register 5

0x7B ICR6 Interprocessor Communications Register 6

0x7F ICR7 Interprocessor Communications Register 7

0x83 VIRSR VMEbus Interrupt Request Status Register

0x87-9F VIVBR1-7 VMEbus Interrupt Vector Base Register 1-7

0xA3 TTR Transfer Time-out Register
Migrating a VIC64/VIC068A Design to the SCV64 13
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.4.1.2 SCV64 Register Map
The SCV64 has 45, 32-bit registers that are addressable from the local bus as well
as the VMEbus. The SCV64 always responds as a 32-bit slave when its internal
control and status registers are accessed (both KDSACK1_ and KDSACK0_ are
asserted).

The SCV64 decodes access to its registers using local address lines KADDR08 to
KADDR00. Registers in the address range 0x000 to 0x04C respond only to aligned
longword transfers; the SCV64 will assert KBERR_ with any other access.
Registers in the address range 0x080 to 0x0BF accept any size transfer, but ignore
all data lines except KDATA07 and KDATA00. Registers in the address range
0x0C0 to 0x0E0 respond only to aligned longword transfers; the SCV64 asserts
KBERR_ with any other access.

0xA7 LBTR Local Bus Timer Register

0xAB BTDR Block Transfer Definition Register

0xAF ICR Interface Configuration Register

0xB3 ARCR Arbiter/Requester Configuration Register

0xB7 AMSR Address Modifier Source Register

0xBB BESR Bus Error Status Register

0xBF DMAISR DMA Interrupt Status Register

0xC3 SS0CR0 Slave Select 0 Control Register 0

0xC7 SS0CR1 Slave Select 0 Control Register 1

0xCB SS1CR0 Slave Select 1 Control Register 0

0xCF SS1CR1 Slave Select 1 Control Register 1

0xD3 RCR Release Control Register

0xD7 BTCR Block Transfer Control Register

0xDB BTLR1 BLock Transfer Length Register 1

0xDF BTLR0 Block Transfer Length Register 0

0xE3 SRR System Reset Register

0xEB-0xFF Reserved Locations

Table 3: VIC64/VIC068A Register Map

Register Address Name Description
Migrating a VIC64/VIC068A Design to the SCV6414
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
Ranges 0x050 to 0x07F and 0x0E4 to 0x1FC are reserved locations and the SCV64
will assert KBERR_ if accessed. The SCV64 register map is shown in Table 4.

Table 4: SCV64 Register Map

Register address Name Description

0x000 DMALAR DMA local Address Register

0x004 DMAVAR DMA VMEbus Address Register

0x008 DMATC DMA Transfer Count

0x00C DCSR DMA Control and Status Register

0x010 VMEBAR VMEbus Slave Base Address

0x014 RXDATA Rx(Receive) FIFO Data

0x018 RXADDR Rx(Receive) FIFO Address Register

0x01C RXCTL Rx(Receive) Control Register

0x020 BUSSEL VMEbus/VSB Bus Select

0x024 IVECT VMEbus Interrupt Vector

0x028 APBR Access Protect Boundary

0x02C TXDATA Tx (Transmit) FIFO Output Latch

0x030 TXADDR Tx(Transmit) FIFO Address Output Latch

0x034 TXCTL Tx(Transmit) FIFO AM code and Control bit latch

0x038 LMFIFO Location Monitor FIFO Read port

0x03C MODE SCV64 Mode Control Register

0x040 SA64BAR Slave A64 Base Address

0x044 MA64BAR Master A64 Base Address

0x048 LAG Local Address Generator

0x04C DMAVTC DMA VMEbus Transfer Count

0x050 to 0x07F Reserved

0x080 STAT0 Status Register 0

0x084 STAT1 Status Register 1

0x088 GENCTL General Control Register

0x08C VINT VMEbus Interrupt Register

0x090 VREQ VMEbus Request Register

0x094 VARB VMEbus Arbiter Register
Migrating a VIC64/VIC068A Design to the SCV64 15
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
0x098 ID ID Register

0x09C CTL2 Control and Status Register

0x0A0 7IS Level 7 Interrupt Enable Register

0x0A4 LIS Local Interrupt Status Register

0x0A8 7IE Level 7 interrupt Enable Register

0x0AC LIE Local Interrupt Enable Register

0x0B0 VIE VMEbus Interrupt Enable Register

0x0B4 IC10 Local Interrupts 1 and 0 Control Register

0x0B8 IC32 Local Interrupts 3 and 2 Control Register

0x0BC IC54 Local Interrupts 5 and 4 Control Register

0x0C0 MISC Miscellaneous Control Register

0x0C4 DLCT Delay Line Control Register

0x0C8 DLST1 Delay Line Status Register 1

0x0CC DLST2 Delay Line Status Register 2

0x0D0 DLST3 Delay Line Status Register 3

0x0D4 MBOX0 Mailbox Register 0

0x0D8 MBOX1 Mailbox Register 1

0x0DC MBOX2 Mailbox Register 2

0x0E0 MBOX3 Mailbox Register 3

0x0E4 to 0x1FC Reserved

Table 4: SCV64 Register Map

Register address Name Description
Migrating a VIC64/VIC068A Design to the SCV6416
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.4.2 Register Access
The following sections describe how registers are accessed when both using the
VICx and SCV64 devices.

1.4.2.1 Accessing the VICx Internal Registers
Below is a list of all the control and bus signals involved in a VICx
(VIC64/VIC068A) register access:

• PAS*: Physical/Processor Address Strobe

• DS*: Processor Data Strobe

• CS*: VIC068A/VIC64 Register Chip Select

• R/W*: Processor Read/Write signal

• DSACK[1:0]*: Data size acknowledge signal

• LD[7:0]: Processor Local Data

• LA[7:0]: Processor Local Address

Access to the VICx internal registers is determined by the assertion of PAS*, DS*,
and CS*. R/W* will determine if the access is a read or a write. Although the
registers are 8 bits wide, the VICx always acknowledges a register access with
DSACK*s asserted. This is due to the fact that the registers are addressed on
longword boundaries. When reading a register, data is placed on the LD[7:0] lines.
When writing to a register, data must always be place on the LD[7:0] lines. A
register access will complete when either PAS*, DS*, or CS* deasserts.

Accesses to the Interprocessor Communications Facilities registers are accessed by
using the ICFSEL* signal. This signal is driven from the VMEbus address
decoders. When it is asserted, the VIC device checks A[5:1] to determine which
ICF register is accessed.

For a detailed timing diagram refer to the Cypress VMEbus Interface handbook.
Migrating a VIC64/VIC068A Design to the SCV64 17
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.4.2.2 Accessing the SCV64 Internal Registers
Below is a list of all the control and bus signals involved in a SCV64 register
access:

• SCV64SEL_: SCV64 chip select used by a local address decoder for register
accesses.

• KADDR[0:8]: Local address lines.

• KSIZ[1:0]: Local bus data transfer size.

• KDATA[31:0]: Local bus data lines.

• KAS_: Local Address Strobe.

• KDS_: Local Data Strobe.

• KWR_: Local Read/Write signal.

• KDSACK[1:0_]: Local bus Data Transfer and size acknowledge signals.

Note: The KFC[2:0] signals are not decoded during a register access as they would
be during a local slave access. This will discussed further in section 1.7 when the
SCV64 is a local slave.

A register access occurs when the SCV64SEL_ signal (the SCV64 register access
chip select) is asserted. This indicates to the SCV64 that the pending local cycle is
an access to its internal registers.
Migrating a VIC64/VIC068A Design to the SCV6418
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
The sequence of events for a register access are as follows:

• A local master drives the address on KADDR[0:8] and KSIZ[1:0] and KWR_

• The local master asserts KAS_ and KDS_.

• The local address decoder asserts SCV64SEL_

• The local master places data on the KDATA[31:0] for a write access

• The SCV64 latches data into the appropriate register in the case of a write
access

• The SCV64 drives the data onto the KDATA[31:0] lines in case of a read access

• The SCV64 asserts both KDSACK[1:0]_.

• The local master negates the control signals and stops driving the address bus.

• The SCV64 negates the KDSACK[1:0]_ signals.

1.4.3 Register Accesses Differences Overview
The following section outlines the differences of the protocol differences between
the two register accesses. This section is not a bit by bit comparison of each of the
device’s CSR space. As a standard notation, all active low signals (logic state is zero
when asserted) are appended with an “*” or “_”.

1.4.3.1 Address Phase
In both devices, a register access is determined by the assertion of a chip select. The
VICx requires assertion of CS* (or ICFSEL*) and the SCV64 requires the assertion
SCV64SEL_. In both devices, only the lower 8-bit local address lines are decoded,
LA[7:0] for the VICx and KADDR[7:0] for the SCV64. The PAS* signal for the
VICx and the KAS_ signal for the SCV64 indicate the beginning of the address
phase.

The address and transfer type (read or write) is latched. When accessing the SCV64
registers from the VMEbus, the SCV64 must first gain access of the local bus by
asserting RAMSEL_. The local address decoder then redirects the cycle to the
SCV64 registers by asserting SCV64SEL_.

During a register access, the SCV64 only monitors local address lines
KADDR[8:0]. It ignores the upper data lines.
Migrating a VIC64/VIC068A Design to the SCV64 19
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.4.3.2 Data phase and Termination
In both devices, once the address phase is complete the cycle is accepted and the
data latched.

In the case of a write, the WR* signal for the VICx or the KWR_ signal for the
SCV64 is asserted. Data is placed on the local data lines by the master following
assertion of the DS* signal for the VICx and the KDS_ signal for the SCV64. The
cycle is terminated with both KDSACK[0:1]* asserted with the VICx since it will
always respond as 32 bit device even though registers are 8 bit wide. The SCV64
will respond with both KDSACK[0:1]_ asserted. Assertion of the data transfer
acknowledge signals will prompt the VICx devices and SCV64 that data has been
accepted and to remove all control signals.

In the case of a read (WR* or KWR_ high), data is returned when the Data Transfer
Acknowledge signals are asserted by the target device; either the VICx or the
SCV64. Data latching by the read master is indicated by the removal of the data
strobe signals (DS* and KDS_) and other control signals. The Data Transfer
Acknowledge signals are then negated by the VICx and SCV64 devices.

For detailed timing information refer to the SCV64 VMEbus Component Interface
Manual and the Cypress VMEbus Interface Handbook.
Migrating a VIC64/VIC068A Design to the SCV6420
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.5 DMA Operation
Both the SCV64 and VICx devices have built in DMA capability to allow them to
become master on both the local bus and the VMEbus. DMA capability is key to
higher performance. Both DMA engines handle the segmentation of the data
transfer to ensure that the boundary rules set by the VMEbus specification are not
violated. The use of the DMA engine increases the system performance by
off-loading the processor from having to transfer the data.

When the VICx devices are performing block transfers, they become both the local
bus master and the VMEbus master.

The following sections describe programming and operation of the DMA engine for
each of the devices.

1.5.1 VICx DMA Engine
Performing block transfers using the DMA engine means the VICx becomes the
VMEbus master and the local master.

Performing DMA block transfers as a VMEbus master requires the following steps:

1. Define the transfer length to the VME byte length registers, BTLR0 and
BTLR1 in the VICx device.

— Within the VIC64, D64 block mode operations can be distinguished by
writing to bit 4 of the VIC64’s block transfer definition register (BTDR).
The transfer length must be even because D08 block transfers are not
supported.

2. Define the transfer direction by setting (for reads) or clearing (for writes) the
DMA direction bit and set the DMA enable bit of the VICx block transfer
control register (BTCR)

3. Define the source and destination addresses within the CPU memory map.

4. Enable DMA transfers by clearing the DMA enable bit in the BTCR register.

Tip
The VICx can perform block transfers without using the DMA engine.
Refer to “VME Master Block Operation” on page 38.

The VIC068A can perform D16 and D32 block transfers. The VIC64
can perform D16, D32, and D64 block transfers.

Tip
For description of the VICx chip register set, refer to the Cypress
VMEbus Interface handbook.
Migrating a VIC64/VIC068A Design to the SCV64 21
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
5. Once the previous steps are complete, and when the VICx registers are
initialized, a VMEbus write must be performed to the VMEbus destination
address with the local starting address as the data.

— This is referred to as a Pseudo Write Cycle (PWC). This cycle must be a
write because a read cycle does not place the correct data on the local bus.
This cycle starts the block transfer mechanism and loads the addresses.
Since any assertion of the MWB* (Module wants Bus) signal after the
BTCR[6] bit is set (Block Transfer with Local DMA Enabled) indicates a
PWC.

— No normal read or write cycles should be performed until completion of
the block transfer.

— During this PWC, the VICx loads the local address and signals by asserting
the LADO (Latch Outgoing VMEbus address) signal to the local bus in
order to load the VMEbus address in its internal registers. The VICx loads
the local data value by signaling the BLT* (Block Transfer) signal. The
VICx terminates the local cycle and requests the VMEbus. After the
VMEbus is obtained, the VICx acquires the local bus by generating the
LBR* (Local bus request) signal and drives the local DMA address.

— It is important when using the DMA that local logic decode the BLT*,
LBG*,PAS*, LAEN. For more details on these signals refer to the Cypress
VMEbus Interface handbook.

6. Wait for completion of the DMA. The VICx can notify completion of the
transfer if the completion interrupt is enable in the VICx status register
(DMAICR) and its vector is generated by the VICx error group interrupt vector
address register (EGIVBR).

The SCV64 DMA does not require a Pseudo Write Cycle to be
performed. The source and destination addresses are pre-programmed
within the device prior to launching the DMA operation
Migrating a VIC64/VIC068A Design to the SCV6422
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.5.2 SCV64 DMA Engine
The SCV64 performs all VMEbus block transfers (BLT and MBLT) through its
DMA engine only. The VICx devices can perform block transfers without the use of
its DMA engine (see “Interfacing to the Local Bus” on page 30)

Single cycles can also be performed the SCV64 DMA engine. DMA cycles are
always decoupled transactions. Decoupled transactions mean the source access and
destination access operate independently.

The following set of registers involved in the programming of the SCV64’s DMA
engine:

• DMA Control and Status Register (DCSR)

• DMA Transfer Count Register (DMATC)

• DMA Local Address Register (DMALAR)

• DMA VMEbus address register (DMAVAR)

• Mode register (MODE)

For more information on these registers refer to the SCV64’s User’s Manual.

The following steps are used for initiating the SCV64 DMA:

1. Clear the DCSR register

2. Enable decoupled cycles by clearing either the RXATOM bit (VMEbus reads)
or the TXATOM bit (VMEbus writes) in the MODE register.

3. Set the proper address and data modes.

— This includes programming of the DMALAR and DMAVAR registers. The
DMALAR and DMAVAR values are either the source or destination
address depending on whether the DMA transfer is a VMEbus read or
VMEbus write.

— Data modes are set in the MODE register including: D8,D16,D32, BLT, or
MBLT transfers. Address space is programmed in the MODE register as
well to determine A24, A32, or A64 accesses.

4. If local burst mode is required on the SCV64 local bus, setting the DMABEN
bit in the MODE register enables local bursting.

5. Set the direction of the DMA transaction in the DMARD bit in the MODE
register.

6. Program the DMA transfer count in the DMATC register.

7. Set the GO bit in the DCSR register
Migrating a VIC64/VIC068A Design to the SCV64 23
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
The SCV64’s DMA acquires the source address depending on whether the transfer
is a read or write. Once the DMA completes, the SCV64 internally sets the DONE
bit in the DCSR register and, optionally, asserts the VMEINT signal to the CPU to
indicate normal completion of the DMA transfer.

For more information on Addressing and Data Transfer mode, please refer to the
SCV64’s User’s manual.

1.5.3 DMA Engine Differences
Both the VICx and the SCV64 require that internal registers be programmed prior to
initiating a DMA transfer. Direction of the transfer, length of the transfer, source
and destination addresses need to be set up before a DMA can be performed. The
main difference between implementing DMA transfers are the steps required before
a cycle starts, the types of cycles supported, and configuration.

1.5.3.1 DMA Cycle Initiation
In order to initiate a DMA transfer with SCV64, all that is required is to program
five registers. The SCV64 contains registers for the source and destination
addresses (DMALAR and DMAVAR), the length of the DMA transfer (DMATC
register). All other transfer attributes can be programmed in the DCSR (DMA
control and Status register) and MODE registers. The DMA is then launched by
setting the GO bit.

The VICx devices requires more steps to initiate a transfer. Information on the
DMA transfer is contained both in the internal registers and in the CPU’s local
memory map. Internal registers contain transfer attributes, size of the transfer. The
source and destination addresses are programmed within local CPU memory.
Unlike the SCV64 where the DMA is initiated by setting an internal bit, the VICx
DMA is initiated by performing what is called a Pseudo Write Cycle.

1.5.3.2 DMA Cycle Support
The additional advantage of using the SCV64’s internal DMA is that it allows single
cycle operations to be performed. The VICx’s internal DMA will only perform
block transfers when programmed. Single read and write cycles can be performed
when using the SCV64’s internal DMA engine.

1.5.3.3 DMA Configuration
Configuration of the DMA within the SCV64 (see “SCV64 DMA Engine” on
page 23) allows for easier implementation of application software and also provides
a simple approach when designing a slave VME application.
Migrating a VIC64/VIC068A Design to the SCV6424
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.6 Interfacing to the VMEbus
Both the SCV64 and the VICx devices have similar VMEbus signals. The
differences between the two devices are the buffer control logic. Both devices
require external transceivers and buffer logic to operate on the VMEbus. The
difference between the VICx devices and the SCV64 device is the VICx
requirement to have address and data multiplexing buffers to perform D16, D32,
and D64 (available only with the VIC64) transfers, since the device only provides
eight address and data lines as on chip signals.

For diagram descriptions of the physical interface refer to the SCV64 Vmebus
Component Interface Manual and the Cypress VMEbus Interface Handbook.

1.6.1 VICx VMEbus Hardware Guideline
The VICx (VIC068A/VIC64) interface to the VMEbus is composed of direct
connect signals to the VMEbus backplane as well as buffered signals. The VICx
devices requires specific logic to allow multiplexing and latching of incoming and
outgoing Data Bus Transfers (DBT).

The VICx devices are 8-bit interface devices that offer the full VMEbus D32 bus
width and D64 bus width (available only with the VIC64) when interfaced with the
proper logic. The VMEbus address and data decoding is accomplished through
latches and transceivers that are shared with the local address and data lines. The
VICx devices require external address decode logic for local or VME slave
transfers.

The following list shows the VICx direct connect signals to the VMEbus backplane:

• BG[3:0]IN*

• BG[3:0]OUT*

• BR[3:0]*

• IRQ[1:7]*

• IACK*

• IACKIN*

• IACKOUT*

• BBSY*

• BCLR*

• BERR*

• DTACK*
Migrating a VIC64/VIC068A Design to the SCV64 25
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
• SYSCLK*

• SYSFAIL*

• SYSRST*

• AS*

• DS[1:0]*

• LWORD*

• WRITE*

• ACFAIL*

The VMEbus address, data, and address modifier signals are required to interface
with their appropriate control signals to external logic.

The VMEbus address and data signals are connected to buffer latches enabled and
controlled by the buffer control signals outlined in section 1.6.3. Such signals
include LADO, LADI, LEDO, LEDI, ABEN*, DENO*, D64, BLT*, LAEN*,
DENIN*, and DENIN1*.

Typical VICx applications are composed of x245 Bidirectional transceivers as well
as x543 latched transceivers for the data and address groups [15:8], [23:16], and
[31:24]. Cypress’ CY7C964 device can interface the VICx devices on the VMEbus
since all buffer control signals, address, and data signals connect directly to it. Only
four of these devices are required as opposed to 6 x542 latches and 2 x245
transceivers. The A[7:0], D[7:0] transceivers on the CY7C964 provided the high
drive strength, allowing direct connection to the respective address and data signals
on the VMEbus backplane.

A typical VMEbus interface using the VICx devices can be seen in the Cypress
VMEbus Interface Handbook.
Migrating a VIC64/VIC068A Design to the SCV6426
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.6.2 SCV64 VMEbus Hardware Guideline
The SCV64 interface to the VMEbus is composed of direct connect signals to the
VMEbus backplane as well as buffered signals. The buffers in this interface are
used to allow the device to meet the VMEbus Specification electrical requirements.
As in all buffered design, control and direction signals are required to enable proper
flow of data transfers when in slave mode or in master mode. The SCV64 performs
VMEbus address decoding and data latching internally and does not require latches
since it possesses a full 32 bit address and data bus.

The following list shows the SCV64 direct connect signals to the VMEbus
backplane:

• BG[3:0]IN*

• BG[3:0]OUT*

• BR[3:0]*

• IRQ[1:7]*

• IACK*

• IACKI*

• IACKO*

• BBSY*

• BCLR*

• BERR*

• DTACK*

• SYSCLK

• SYSFAIL*

• SYSRST*

• VRMC*/RETRY_

• L7IACF

All other VMEbus signals require buffering to the VMEbus backplane to allow
electrical characteristics of the signals to meet drive strength requirement. The
signals remaining are:

• VA[31:0]

• VD[31:0]
Migrating a VIC64/VIC068A Design to the SCV64 27
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
• VDATAOUT

• VLWORD_

• VAM[5:0]

• VSTRBOUT

• VAS_

• VWR_

• VDS[1:0]_

VADDROUT is the control signal required to determine the direction of the address
lines during read or write transfers. VDATAOUT is the control signal required to
determine the direction of the data lines during read or write transfers. VSTRBOUT
is the control signal required to determine the direction of all the data transfer bus
control signals. The buffer required for these signals is an ABT245 buffer.

1.6.3 SCV64 VMEbus Interface
Interfacing to the VMEbus using the SCV64 requires less space than the VICx
because the device has the 32-bit and 64-bit interface implemented internally. The
VICx devices require a multitude of multiplexers and latches to build the 32-bit
address and data bus and the 64-bit data bus in order to perform 32-bit and/or 64-bit
operations.

A typical SCV64 to VMEbus interface is shown in Figure 1.
Migrating a VIC64/VIC068A Design to the SCV6428
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
Figure 1: SCV64 VMEbus Interface
VA31-01

VD31-00

VLWORD

VADDROUT

VDATAOUT

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

VAS
VWR
VDS0
VDS1

VAM5-0
VSTRBOUT

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

 G

 DIR

 A0

 A1

 A2

 A3

 A4

 A5

 A6

 A7

B0

B1

B2

B3

B4

B5

B6

B7

AM5-0*

AS*
WR*
DS0*
DS1*

A31-1

D31-0

LWORD*

BR*

IRQ*
IACK*
IACKI*
IACKO*
BBSY*
BCLR*

DTACK*
SYSCLK*

BERR*

SYSFAIL*

BR0* - BR3*

IRQ7* - IRQ1*
IACK*
IACKI*
IACKO*
BBSY*
BCLR*

DTACK*
SYSCLK*

BERR*

SYSFAIL*

SC 6

Direct Connect
VMEbus Signals

VM
Eb

us
 In

te
rfa

ce

SYSRST*

VRMC/VRETRY

SYSRST*

BGIN*
BGOUT*

BG0IN* - BG3IN*
BG0OUT* - BG3OUT*

+5V

03

RMC*
RETRY*
Migrating a VIC64/VIC068A Design to the SCV64 29
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.7 Interfacing to the Local Bus
Both the SCV64 and the VICx devices have Motorola MC68030 type local bus
interfaces. Both devices require address decoding and arbitration circuitry on the
local bus. The difference between the two devices, from a hardware perspective, is
how address decoding and address latching is performed. The VICx devices have
only 8-bit on-chip local address and data lines. The SCV64 has 32-bit on-chip local
address and data lines. The local arbitration is performed either by local logic or the
SCV64 can perform the local arbitration. The VICx devices do not perform local
arbitration.

In the sections below, common direct connect signals to the 68030 device are
outlined. All other signals require additional logic for proper operation.

For diagram descriptions of the physical interface refer to the SCV64 Vmebus
Component Interface Manual and the Cypress VMEbus Interface Handbook.

1.7.1 VICx Local Hardware Guideline
The VICx devices can have their local signals categorized into the following
groups: local address and data lines, the CPU control signals, request and grant
signals, local select signals, buffer control signals, and local interrupt sources.

1.7.1.1 Local Address and Data Lines
The local address signals are required to be connected to latched transceivers to
create a 32 bit address bus. The local Address lines LA[7:0] are connected to a local
address decode block with the local select signals.Note the local address latches are
also connected to the VMEbus address lines since 32-bit addresses are built and
passed through these latches.

The local select signals are:

• CS*
• MWB*
• ASIZ[1:0]
• WORD*

The local data signals are connected to transceiver buffers to build the 32-bit local
data bus. The local data transceivers are also connected to the VMEbus data lines
because data is passed through these latches for 32 bit transfers.

The SCV64’s local interface require less hardware to perform 32-bit
transfers since it internally possesses 32-bit address and data buses.
Migrating a VIC64/VIC068A Design to the SCV6430
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.7.1.2 CPU Control Signals
The following VICx CPU control signals are direct connect to the MC68030 device:

• FC[2:1]

• SIZ[1:0]

• DSACK[1:0]*

• LBERR*

• R/W*

• RMC*

• IPL[2:0]

• HALT*

• RESET*

• PAS*

• DS*

• LIACKO*

1.7.1.3 Buffer Control Signals
The buffer control signals are connected to all latches and transceivers to determine
direction of the address and data lines for local and VMEbus master cycles.
VMEbus address and data lines share the same decode logic. The buffer control
signals are describe in Table 2 on page 9.

1.7.1.4 Arbitration Signals
The arbitration signals LBR* and LBG* are connected to an external arbiter block
which connects to the MC68030’s BR*, BG* and BGACK* signals. The local
interrupt sources can be connected directly to the CPU or routed through a local
interrupt controller device.

For diagram descriptions of the physical interface refer to the Cypress VMEbus
Interface Handbook.
Migrating a VIC64/VIC068A Design to the SCV64 31
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.7.2 SCV64 Local Hardware Guideline
The SCV64 local bus is composed of direct connect signals to the MC68030 and
signals that interface to local address decode logic. Local address decoding is
required but is not shared with VMEbus address decoding. The SCV64 performs
VMEbus address decoding and data latching internally and does not require latches
since it possesses a full 32-bit address and data bus.

When designing with the SCV64, designers have the option of using the SCV64’s
internal arbiter or using arbitration bypass. In this last case, local arbitration logic is
required similar to the local arbitration logic of the VICx devices. The local
interrupt sources can be connected directly to the CPU or routed through a local
interrupt controller device.

The following SCV64 signals are direct connect signals to the MC68030:

• KAS_

• KDS_

• KWR_

• KDSACK[1:0]_

• KBERR_

• KHALT_

• KRMC_

• KFC[2:0]

• KSIZ[1:0]

• KBRQ_

• KBGR_

• KBGACK_

• KIPL[2:0]_

The address decode logic monitors the KADDR[31:0], KAS_, KDSACK[1:0]_,
KFC[2:0], KSIZ[1:0] signals for function type and transfer size. The SCV64 chip
select’s VMEOUT_, and SCV64SEL_ are generated from the local address decode
logic.

A typical SCV64 to VMEbus interface is shown in Figure 2.
Migrating a VIC64/VIC068A Design to the SCV6432
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
Figure 2: Connections for 68030 Design

VA31-01

VD31-00

VLWORD

VADDROUT

VDATAOUT

VAS

VWR

VDS0

VDS1

VAM5-0

VSTRBOUT

BGIN*

BR*

IRQ*

IACK*

BGOUT*

IACKI*

IACKO*

BBSY*

BCLR*

DTACK*

SYSCLK*

BERR*

SYSFAIL*

SCV64

V
M

E
bu

s
In

te
rf

ac
e

Lo
ca

l B
us

 In
te

rf
ac

e

SYSRST*

VRETRY

KFC(2..0)

KDATA(31..0)

SCV64SEL

RAMSEL

C32MHZ

KCLK

C32MHZ

KCLK

PWRRST

EXTRST

LRST

KAS
KDS

KWR

KDSACK(1..0)

KBERR

KHALT

68030

AS

DS

R/W

DSACK(1..0)

BERR

HALT

KRMC

KSIZ(1..0)

KBRQ

KBGR

KBGACK

BR

BG

BGACK

FC(2..0)

SIZ(1..0)

KIPL(2..0)

KAVECAVEC

Local Control Signals

Local Reset Output

External Reset Input

Power On Reset

Size and Memory Space Encoding

LBRQ1

LBGR1

L7INMI

L7IMEM

L7IACF

LIRQ(5..0)

CLK

ADDRESS DECODE

KCLK

KAS

KDSACK(1..0)

KFC(2..0)

KSIZ(1..0)

RAMSEL

VMEOUT

SCV64SEL

KADDR(31..0)

BITRIG

BIREL

BIMODE

D(31..0)

A(31..0)

Local Data Bus

Local Address Bus

Alternate Local Bus Request

Alternate Local Bus Grant

Local Interrupt Sources

RMC

KADDR

BI-Mode Control

RESET

IPL(2..0)

VMEOUT
Migrating a VIC64/VIC068A Design to the SCV64 33
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.8 Feature Comparisons
This section compares VMEbus, interrupt, and miscellaneous features between the
two devices.

1.8.1 VMEbus Features
The VICx and SCV64 devices can be programmed to perform arbitration and
interrupt handling functions in a VMEbus system. Each device also has requester
capability to acquire VMEbus mastership.

1.8.1.1 Interrupts and Interrupt Handling
The SCV64 and VICx devices offer the capability of generating VMEbus interrupts
and also the handling of VMEbus interrupts. In a VMEbus system, only one
VMEbus interrupt handler should be present for each interrupt level.

Both devices generate VMEbus interrupts by means of a register access. The VICx
device’s VIRSR register controls the assertion and deassertion of the seven
VMEbus interrupts signals. Once the interrupt is generated, the handler proceeds in
acquiring the interrupt vector which is programmed in the VIVBRx register. The
VICx devices only return 8-bit vectors.

The SCV64 can be programmed to generate VMEbus interrupts on any one of the
seven VMEbus interrupt levels. The VINT register controls both determination of
the level as well as assertion and clearing of the interrupt. Upon acknowledgement
of the interrupt, the SCV64 drives an 8-bit vector from the IVECT register onto the
VMEbus.

As an interrupt handler, the VIC068A device performs 8-bit interrupt acknowledge
cycles. The VIC64 can be programmed to perform 8-bit, 16-bit, and 32-bit interrupt
acknowledge cycles on the VMEbus.

For more information on how each interrupt handler is programmed, refer to the
Cypress VMEbus Interface Handbook and the SCV64 User’s manual.

1.8.1.2 Requester
The SCV64’s VMEbus requester can be configured to be in Fair mode or in
Demand mode by setting the REQ bit in the VREQ register. In fair mode, the
SCV64 waits until there are no requests pending at its programmed level and
BBSY* is inactive. In Demand mode, the SCV64 requests the bus if the following
situations occur: entries exist within its transmit FIFO, a coupled cycle is initiated,
or a VMEbus Interrupt Acknowledge cycle is pending.
Migrating a VIC64/VIC068A Design to the SCV6434
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
The priority of each interrupt level is programmed by the LVL1 and LVL0 bits in
the VREQ register. The SCV64 supports Release on Request (ROR) and Release
When Done (RWD) modes. The SCV64 can be programmed to monitor the
VMEbus clear (BCLR*) signal by setting the BCEN bit in the VREQ register.

The VICx devices operate in Demand mode where a request is issued if assertion of
MWB* is qualified by PAS* for single and block transfer accesses, a VMEbus
interrupt acknowledge cycle is pending, and for coupled cycles.

The release modes supported by the VICx are Release on Request (ROR), Release
When Done (RWD), Release on Clear (ROC), Release under RMC* (Read Modify
Correct) mode, and Bus Capture and Hold (BCAP) mode. In ROC mode, the VICx
device holds the bus until the VMEbus Clear (BCLR*) signals is asserted. In BCAP
mode, the VICx releases the bus only when a different release mode is programmed.
In RMC mode, the assertion of RMC* and PAS* causes the VICx to request the
VMEbus. Only when RMC* is released is BBSY* be removed. RMC mode is
programmed by setting the ICR[5] bit in the ICR register. The VICx devices can be
programmed in fair mode if fairness is enabled in the ARCR[3:0] register.

For more information on how each Requester is programmed, refer to the Cypress
VMEbus Interface Handbook and the SCV64 User’s manual

1.8.1.3 Arbitration
Both the VICx and SCV64 have the capability of being VMEbus arbiter when
assuming system controller functions.

When the VICx devices are the system controller, they drive the SCON* signal at
all times. The VICx devices support Priority mode (PRI) where BR3* has the
highest priority. In Round Robin Scheme (RRS), priority is assigned on a rotating
basis.

Single level arbitration can be obtained by programming the VICx devices to
priority mode and setting all priority levels to the same level. The VICx arbiter
asserts BCLR* to relinquish bus ownership of a device in PRI and RRS mode. The
VICx arbiter has a time-out mechanism of 8 us. This ensures that BBSY* is driven
for the VMEbus required 90ns.

The SCV64 provides all arbitration modes required by the VMEbus Specification:
Full Priority mode (PRI), Round Robin Scheme(RRS), and Single level Arbiter.
Two additional mixed priority modes are provided, priority level 3, and priority
levels 2 and 3.
Migrating a VIC64/VIC068A Design to the SCV64 35
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
The mode of arbitration is programmed in the VARB register by setting the
ARB[1:0] bits.The SCV64 possesses an arbitration time-out of 16us, this is x2 the
time allowed by the VICx devices. This timer can be disabled by clearing the ATEN
bit in the VARB register.

Both devices have a system time-out mechanism which ensures that if no DTACK
is asserted, a BERR* is issued. The system time-out is configured in the VICx
devices in the TTR register. The system time-out is configured in the SCV64 in the
VARB register by setting the

For more information on how each arbitration mode is programmed, refer to the
Cypress VMEbus Interface Handbook and the SCV64 User’s manual

1.8.2 Interrupt Features
1.8.2.1 Tick Timer

Both the SCV64 and the VICx devices offer a Tick Timer which can be enabled to
interrupt the local CPU at regular intervals.

In the case of the SCV64, the TICK* pin is driven low each time the timer expires.
It remains low until software resets it though the CLRTIK bit in the STAT0 register.
The TICK* signal is typically connected to a general purpose interrupt on the local
bus.

For the VICx devices, the LIRQ2* signal can be enabled to function as the interrupt
generator issuing periodic interrupts. This can be configured in the SS0CR0
register. If the Tick Timer is not enabled, LIRQ2* acts as general purpose local
interrupt.

For more detailed information refer to the SCV64 User’s Manual and the Cypress
VMEbus Interface Handbook.

1.8.2.2 Location Monitor Accesses and Mailboxes
The VICx devices do not have mailbox or location monitor capabilities.

The SCV64 has a location monitor capability which allows it to interrupt the local
bus when data is written to that location.

The SCV64 also has mailbox registers but they are used to store data only; they do
not generate interrupts on the local or VMEbus.
Migrating a VIC64/VIC068A Design to the SCV6436
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
The location monitor resides at the top longword of each A32 and A24 slave images
and can be accessed from both the local bus and the VMEbus. The bottom word of
the location monitor is used for 16-bit messages. Since the location monitor replaces
the upper longword of memory, reads to that location result in a VMEbus error and
writes do not generate local accesses. A write to the location causes LMINT* to be
asserted to the local CPU.

For more information on programming and usage of the Location monitor, refer to
the SCV64 User’s manual.

1.8.2.3 Local Interrupts
The VICx devices can be configured through its internal registers to generate local
interrupts. User defined local interrupts can be generated using the IPL lines.

The VICx devices can provide the status ID vector or generate LIACKO* to signal
and auto vectored interrupt. The local interrupt signals can be programmed to be
level or edge sensitive and the polarity can be programmed. The VICx devices can
also generate local interrupts caused by internal VMEbus events. VMEbus internal
events can include: VMEbus ACFAIL*, SYSFAIL*, BERR*, interrupter interrupt,
and arbitration time-out. Completion of a DMA transfer can also be mapped to local
interrupts. The VICx device can be programmed to handle incoming interrupts.

The SCV64 provides a full set of interrupt features on the local bus through its
KIPL lines, LIRQ lines, and level seven local interrupts.

The KIPL signals encode seven possible CPU interrupt levels. Level seven local
interrupts, local, and interrupts from VMEBus sources are all mapped to a common
set of CPU interrupt levels. Level seven interrupts such as L7NMI*, L7IMEM*, and
L7IACF* are automatically mapped to the highest CPU level while VMEBus
interrupts are all pre-mapped to their corresponding CPU interrupt levels. The local
interrupts can be programmed to different CPU levels via the ICx registers.

The SCV64 propagates any incoming interrupt to the CPU via its KIPL lines. The
CPU generates an IACK cycle which the SCV64 can decode. The SCV64 is capable
of handling either internal or external local IACK decoding.

For more information on how to program the SCV64’s interrupts, refer to the
SCV64 User’s Manual.

1.8.3 Miscellaneous Features
This section compares miscellaneous features between the SCV64 and VICx.
Migrating a VIC64/VIC068A Design to the SCV64 37
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.8.3.1 Deadlock resolution
In a VMEbus system, deadlock conditions occur when the local CPU is trying to
access the VMEbus while there is an incoming VME slave cycle that has been
properly signaled. This condition usually occurs during coupled accesses to the
VMEbus such as incoming VME read, coupled master write cycles to the VMEbus
or Interrupt Acknowledge Cycles (IACK). The SCV64 has the capability of
handling these conditions using local bus terminations. If these terminations are not
successful, deadlock conditions can be resolved by allowing the VMEbus time-out
mechanism to signal a BERR* condition.

When the VICx devices encounter a deadlock scenario, they can be programmed in
the ICR register to perform one of the following operations:

• Assert DEDLK*

• Assert DEDLK*, LBERR*, and HALT*

• Assert DEDLK*, and LBERR with HALT* during local Read Modify Write
Cycles (RMC).

1.8.3.2 VME Master Block Operation
As a VME master, the VICx devices are capable of generating VMEbus master
block transfers using the MOVEM command. In this mode, the local resource
configures the VICx for a 68K type MOVEM block transfer and proceeds with
consecutive- address cycles. The CPU remains local bus master until the cycle
completes. This operation is similar to a DMA transaction, but the burst length is
programmed in the RCR register and the block transfer is configured in the BTCR
register.

As a VME master, the SCV64 perform block transfers only when using its internal
DMA. For more details on how to use the SCV64’s DMA, refer “DMA Operation”
on page 21.

1.8.3.3 DRAM Refresh Controller
The VICx devices contain a DRAM refresh controller. The VICx increments a
DRAM refresh counter every 15us, when the refresh is enabled in the ARCR
register.

The SCV64 does not have a DRAM refresh controller.

The SCV64 only has to assert KBERR* and KHALT* to resolve this
condition. The KBERR* and KHALT* assertion is compliant to the
Motorola 68K protocol which interprets this termination as a Retry
mechanism.
Migrating a VIC64/VIC068A Design to the SCV6438
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.8.3.4 Additional SCV64 features
This section describes features available with the SCV64 but not supported by the
VICx devices.

RETRY*/VRMC Function
The SCV64 RETRY*/VRMC pin can be configured as either the RETRY* pin, or
as a proprietary read-modify-write pin. The use of this pin is configured with the
RMCPIN bit in the MODE register. When configured as RETRY*, it may be direct
connected to the VMEbus connector. When configured as the VRMC pin, is should
be routed through the strobes buffer (along with VAS, VDS0, VDS1, etc.) with the
direction controlled by VSTRBOUT.

Clocks
The C32MHZ clock input on the SCV64 controls several internal timing functions.
Besides generating the SCV64 clock/timer outputs (C8MHZ, C14US, BAUDCLK,
TICK, and WDOG, SYSCLK), it also affects the following:

• The local bus timer

• The VMEbus ownership timer

• The VMEbus time-out timer

• Calibration of internal delay lines

To ensure reliable operation of the SCV64, this pin must be tied to a 32MHz clock.
The KCLK clock input should be synchronous to the local CPU clock, and can be
any frequency up to the specified limit.

Bi-mode
If BI-mode is not to be used in the system, tie BIREL to ground, and BITRIG to a
high level. The SCV64 enters BI-mode whenever one of the BI-mode initiators is
active, but automatically returns to an operational state when the initiator is
removed. Initiators of BI-mode include:

• Any reset

• IRQ1*: when configured as a BI-mode initiator

• SBI bit in the GENCTL register

• BITRIG
Migrating a VIC64/VIC068A Design to the SCV64 39
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
IRQ1* defaults as a BI-mode initiator, meaning that if this signal is low after reset,
the SCV64 remains in BI-mode until it is released. Normally, all IRQ lines are
pulled high by the VME backplane, however, some backplanes are shipped without
terminating resistors. Systems where IRQ1* is floating can see erratic entry into
BI-mode until IRQ1* is re-configured as a VME interrupt source using the VI1BI
bit in the GENCTL register.

Auto-ID Mechanism
The SCV64 has a proprietary Auto-ID mechanism which identifies the relative
position of each board without using jumpers or on board information. The ID
number generated by Auto-ID can then be used to determine the board’s base
address.

The benefits of bypassing the use of jumpers through Auto-ID include:

• Increased speed of system level repairs in the field

• Reduced possibility of incorrect configurations

• Reduced number of unique spare cards that must be stocked

The SCV64 Auto ID mechanism is not compliant to the VME64 Specification
Auto-ID mechanism.

1.9 Resets
1.9.1 VICx Resets

The VICx devices are reset by any of the following conditions: global reset, internal
reset, system reset, or power-on reset. A system reset is performed by accessing one
the VICx’s internal register.

1.9.1.1 Global Reset
Global reset provides the most complete reset; all of the VICx circuitry is reset. A
global reset is initiated when ILP0 is asserted after the IRESET* signal is asserted.
During a global reset, SYSCLK is not driven and the daisy chain is disconnected.

VICx devices must be globally reset at power-up for proper operation.
Migrating a VIC64/VIC068A Design to the SCV6440
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.9.1.2 Internal Reset
The internal reset is initiated by asserting IRESET* for a minimum of 20ns. The
VICx then asserts LBR* and waits 1us for the assertion of LBG*. If LBG* is
asserted within the 1us, the VICx asserts HALT* and RESET* immediately.

During the internal reset, the VICx places all three state outputs to a high-Z state
and begins a 200ms time-out period. If IRESET* is still asserted, the VICx begins
an additional 200 ms time-out. If the VICx device is system controller, it also asserts
SYSRESET* with RESET* and HALT* for 200ms (required by the VMEbus
Specification).

1.9.1.3 System Reset
A VMEbus system reset is signaled by the assertion of the VMEbus signal
SYSRESET*. The system reset is identical in function to the internal reset, except
for the following: the reset state of some registers are different, if SYSRESET* is
still asserted after 200 ms, the reset completes once de-asserted and does not
perform another internal reset.

1.9.1.4 Power-on Reset
To reliably reset the VICx at power on, a global reset must be performed. The VICx
device must be in a stable operating environment at the initiation of reset. The VICx
is considered to be in a stable operating environment when VCC is stable at 5 V, the
input clocks are within their operating range, and all inputs are inactive. The
power-on reset circuitry must be designed to assert the IPL0 signal for a minimum
of 50ns.

For more information on the internal reset scheme of the VICx device, refer to the
Cypress VMEbus Interface handbook.

1.9.2 SCV64 Resets
The SCV64 can be reset through the following sources: PWRRST*, EXTRST*,
SYSRST*, a software reset, and, when programmed System controller, with the
BG0IN* signal.

The PWRRST* input directly resets all circuits in the SCV64 and should be held for
a minimum of 100 ms once the SCV64 is in stable operating conditions. The
SCV64 is considered to be in a stable operating environment when VCC is stable at
5V, the input clocks are within their operating range, and all inputs are inactive.
Reset through the PWRRST* pin set the PWRUP bit in the STAT1 register. This bit
is cleared under all other reset conditions.

The SCV64 asserts SYSRST* if PWRRST* is asserted, the BG0IN* pin is asserted
while System controller or if the SWRST bit in the GENCTL register is set.
SYSRST* will be asserted for a minimum of 0.25 seconds.
Migrating a VIC64/VIC068A Design to the SCV64 41
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
The local reset LRST* output is asserted to the local bus when PWRRST*,
EXTRST*, SYSRST*, a software reset, and if BG0IN* is asserted.

1.10 VICx and SCV64 Comparison Summary
Table 5 outlines the main functional features supported by the SCV64 and VICx
devices.

Table 5: Functional Overview

Functional Feature Set

Supported VICx SCV64 Comments

Internal DMA Yes Yes Both DMA engines can be programmed to perform
VMEbus block transfers. The SCV64’s DMA can also
perform single cycles. Section 1.6 reviews this in detail.

VMEbus Block Transfers
(Reads/Writes)

Yes Yes These are performed using the DMA engine. The VIC64
also supports a MOVE block command from the CPU
which allows it to perform BLTs as a local slave, the SCV64
does not support this.

Data Path FIFO based No Yes The SCV64’s internal architecture is FIFO based. This
allows for decoupled accesses. The VIC64 only provides a
single register for write posting.

Register Accesses from the
VMEbus

Partially Yes The SCV64 and VICx registers can be accessed via the local
bus. The SCV64 has the added functionality to access
registers from the VMEbus. The VIC ICF registers can be
accessed from the VMEbus.

Reflected Cycle No Yes The SCV64 supports reflected cycles where the SCV64 will
respond to its own VMEbus base address. This is useful for
loopback diagnostics.

Rescinding DTACK* Yes No The VIC64 supports rescinding DTACK* whereby the
signal is actively driven high.

VMEbus Address decode No Yes The SCV64 has a built in address decoder on the VMEBus
interface. This simplifies a board design since no address
decode logic is required externally.

Auto System Controller
detection

No Yes The SCV64 will automatically detect system controller
functionality by monitoring its BGIN3* input.

VMEbus Interrupt
Handling and Generating

Yes Yes Both devices comply to the VME64 specification. The
VICx devices can support 16, and 32 bit vectors. The
SCV64 will provide 8 bit vectors.
Migrating a VIC64/VIC068A Design to the SCV6442
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
VMEbus Requester Yes Yes Both devices comply to the VME64 specification. Refer to
Section 1.8.1.1 of this document

VMEbus arbiter Yes Yes Both devices comply to the VME64 specification. Refer to
section 1.8.1.3 of this document

Local Bus Interrupts Yes Yes Both devices support the IPL interrupt lines as defined by
the MC68030 device. Refer to section 1.8.2.3 of this
document.

Mailbox Registers No Yes The SCV64 Mailbox register will store data only and will
not generate interrupts. The VICx does not possess mailbox
registers.

Location Monitors No Yes In the SCV64, the location monitor resides at the top
longword of each of the A32 and A24 images.

Tick Timer Yes Yes Refer to section 1.8.2.1 of this document.

Watchdog timer No Yes The SCV64 has a watchdog timer which runs for 2 sec. and
then asserts the WDOG_ signal. This timer can be disabled
by clearing the ENDOG bit in the MISC register.

Bus Isolation Mode No Yes The SCV64 can be placed in Bus Isolation mode. The VIC
devices do not support this feature. Refer to section 1.8.3.4
of this document.

DRAM Refresh Controller Yes No The VICx can perform a DRAM refresh every 15us.

Retry No Yes Refer to section 1.8.3.4 of this document.

Auto ID No Yes The SCV64 has a proprietary Auto-ID mechanism. Refer to
section 1.8.3.4 for more information.

VME64 Auto-ID No No Neither devices implemented this VME64 feature.

Table 5: Functional Overview

Functional Feature Set

Supported VICx SCV64 Comments
Migrating a VIC64/VIC068A Design to the SCV64 43
8091078_AN001_01

1. Migrating a VIC64/VIC068A Design to the SCV64
1.11 Conclusion
Although the SCV64 and the VICx (VIC068A/VIC64) have similar bus interfaces,
it does not mean that the handling of all operations are performed identically. The
VICx and SCV64 are complete VMEbus and 68030 interface solutions, but both
require unique hardware and software design approaches.

This document outlined the major feature differences, signal descriptions, and
hardware implementations to allow the SCV64 to replace aVIC device in an
existing design. The main advantage of the SCV64 from a hardware approach is that
less external logic is required due to its full 32-bit local and VME buses. The only
external logic required with the SCV64 is for local address decoding.

The SCV64 User’s Manual offers a comprehensive description of all timing and
functional features of the device. Tundra Semiconductor’s Applications
Engineering team is available for any additional questions through
support@tundra.com or by visiting www.tundra.com.
Migrating a VIC64/VIC068A Design to the SCV6444
8091078_AN001_01

	1. Migrating a VIC64/VIC068A Design to the SCV64
	1.1 Overview
	1.2 Feature Differences
	1.3 Signal Description
	1.3.1 VMEbus Signals
	1.3.2 Local Signals

	1.4 Registers
	1.4.1 Device Register Maps
	1.4.1.1 VIC64/VIC068A Register Map
	1.4.1.2 SCV64 Register Map

	1.4.2 Register Access
	1.4.2.1 Accessing the VICx Internal Registers
	1.4.2.2 Accessing the SCV64 Internal Registers

	1.4.3 Register Accesses Differences Overview
	1.4.3.1 Address Phase
	1.4.3.2 Data phase and Termination

	1.5 DMA Operation
	1.5.1 VICx DMA Engine
	1.5.2 SCV64 DMA Engine
	1.5.3 DMA Engine Differences
	1.5.3.1 DMA Cycle Initiation
	1.5.3.2 DMA Cycle Support
	1.5.3.3 DMA Configuration

	1.6 Interfacing to the VMEbus
	1.6.1 VICx VMEbus Hardware Guideline
	1.6.2 SCV64 VMEbus Hardware Guideline
	1.6.3 SCV64 VMEbus Interface

	1.7 Interfacing to the Local Bus
	1.7.1 VICx Local Hardware Guideline
	1.7.1.1 Local Address and Data Lines
	1.7.1.2 CPU Control Signals
	1.7.1.3 Buffer Control Signals
	1.7.1.4 Arbitration Signals

	1.7.2 SCV64 Local Hardware Guideline

	1.8 Feature Comparisons
	1.8.1 VMEbus Features
	1.8.1.1 Interrupts and Interrupt Handling
	1.8.1.2 Requester
	1.8.1.3 Arbitration

	1.8.2 Interrupt Features
	1.8.2.1 Tick Timer
	1.8.2.2 Location Monitor Accesses and Mailboxes
	1.8.2.3 Local Interrupts

	1.8.3 Miscellaneous Features
	1.8.3.1 Deadlock resolution
	1.8.3.2 VME Master Block Operation
	1.8.3.3 DRAM Refresh Controller
	1.8.3.4 Additional SCV64 features

	1.9 Resets
	1.9.1 VICx Resets
	1.9.1.1 Global Reset
	1.9.1.2 Internal Reset
	1.9.1.3 System Reset
	1.9.1.4 Power-on Reset

	1.9.2 SCV64 Resets

	1.10 VICx and SCV64 Comparison Summary
	1.11 Conclusion

