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Using the Slave VIC (CY7C960/961)

Many VME boards, especially I/O boards, need only be aware
of VME Slave transactions. Most commercially available VME
interface chips are capable of both Master and Slave VME
transactions and require some local intelligence, such as a
microprocessor, to reset and program the interface chip.
I/O-only boards do not need a microprocessor since informa-
tion is simply passed to and from the I/O without being pro-
cessed in between (at least in the simplest case) so the addi-
tion of a microprocessor, or any other kind of intelligence such
as a state machine, only adds to the cost of the interface in
design time, board space, and money. The most common so-
lution to the problem of a slave-only interface is an FPGA,
which still adds extra cost in the form of design time, board
space, and the cost of the FPGA.

A better solution to this problem is Cypress’s Slave VME In-
terface Controller (SVIC) Family: the CY7C960 and the
CY7C961. An SVIC, along with four Bus Interface Logic chips
(CY7C964), implements a complete VME64-compliant
slave-only VME interface that requires no microprocessor
and occupies minimum board space.
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CY7C960/961 Features
• Full VME64 Slave transaction support

• DRAM/Refresh Controller

• CY7C964 Control Interface

• I/O (Chip Select Output) Controller

• VMEbus Interrupter

• Address Modifier (AM) Code Discriminator

• Slave Address Region Decoder

• Limited Master Support (CY7C961 only)

Slave VIC Operation Overview
Figure 1 shows the internal blocks that comprise the
CY7C960. The CY7C960 Slave VMEbus Interface Controller
(SVIC) provides the board designer with an integrated,
full-featured VME64 interface. This 64-pin device can be pro-
grammed to handle every transaction defined in the VME64
specification. The CY7C960 contains all the circuitry needed
to control large DRAM arrays and local I/O circuitry without
the intervention of a local CPU. There are no registers to read
or write, and no complex command blocks to be constructed
in memory. The CY7C960 simply fetches its own configura-
tion parameters during the power-on reset period. 

After reset, the CY7C960 responds appropriately to VMEbus
activity and controls local circuitry transparently. The
CY7C960 controls a bridge between the VMEbus and the lo-
cal DRAM and I/O. Once programmed, the CY7C960 pro-
vides activities such as DRAM refresh and local I/O hand-
shaking in a manner that requires no additional local circuitry.

The VMEbus control signals are connected directly to the
CY7C960. The VMEbus address and data signals are con-
nected to companion address/data transceivers which are
controlled by CY7C960. The CY7C964 VMEbus Interface
Logic Circuit is an ideal companion device. The CY7C964
provides 8 bits of data and address logic that has been opti-
mized for VME64 transactions. In addition to providing the
specified drive strength and timing for VME64 transactions,
the CY7C964 contains all of the circuitry needed to multiplex
the address/data bus for multiplexed VMEbus transactions. It
contains counters and latches needed during BLT (Block
Transfer) operations. It also contains address comparators
which can be used in the board’s Slave Address Decoder. For
a 6U or 9U application, four CY7C964 devices are controlled
by a single CY7C960. For 3U applications, the CY7C960 con-
trols two CY7C964 devices and an address latch.

The design of the CY7C960 makes it unnecessary to know
the details of the VMEbus transaction timing and protocol.
The complex VMEbus activities are translated by the
CY7C960 to be simple local cycles involving a few familiar
control signals. Similarly, it is not necessary to understand the
operation of the companion device, the CY7C964; all control
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sequences for the part are generated automatically by the
CY7C960 in response to VMEbus or local activity.

VMEbus transactions supported by CY7C960 include D8,
D16, D32 (including UAT), MD32, D64, A16, A24, A32, A40,
A64 single cycle and block transfer reads and writes,
Read-Modify-Write cycles (including multiplexed), and Ad-
dress-only (with or without Handshake). The CY7C960 func-
tions as a VMEbus Interrupter, and supports the Auto Slot ID
standard and CR/CSR space. The CY7C960 also handles
LOCK cycles, although full LOCK support is not possible with-
in the constraints of the CY7C960 pinout (full LOCK support
is included in the CY7C961).

On the local side, no CPU is needed to program the CY7C960
nor to manage transactions. All programmable parameters
are initialized through the use of either the VMEbus or a serial
PROM. As the CY7C960 incorporates a reliable power-on re-
set circuit, parameters are self-loaded by the device at pow-
er-up or after a system reset. If the VMEbus is used to provide
parameters, a VMEbus Master provides the programming in-
formation using a protocol that is compliant with the Auto Slot
ID protocol from the VME64 specification.

The architecture of the SVIC includes several functions that
remove most of the VMEbus problems from the board design-
er’s shoulders. All VMEbus control and response is automat-
ic; the user loads the Region/AM table during configuration,
and the CY7C960 then handles all appropriate VMEbus
transactions. The CY7C964 controller works in lock step with
the VMEbus Control Interface, providing the correct timing
and control for the transaction in process. Local circuitry such
as DRAM or I/O is simplified by the Refresh Controller, the

DRAM Controller, and the Output Pattern Table. Block trans-
fers are supported by the Local Address Controller together
with the CY7C964 circuitry. Local timing is determined during
configuration, and handshaking is available from the Data
Byte Enable Controller. Local Interrupts are supported
through the VME Interrupt Interface. The CY7C960 contains
an internal Power-on Reset circuit, and also responds to a
VMEbus SYSRESET*.

General Overview
Figure 2 illustrates a block diagram of a slave-only VME inter-
face using one CY7C960/961 and four CY7C964s. No exter-
nal glue logic is required when using the SVIC. The SVIC
directly drives up to 6 Chip Selects (CSs) and four Data Byte
Enables (DBEs) for interfacing to local resources. Depending
on the requirements of your design, there may be a need for
some external logic to implement a SWAP buffer, DRAM ad-
dress interface, interrupt generation, and/or REGION decod-
ing. The extent of this external logic would consist mainly of
buffers (244s and 245s) and a PLD.   The amount and com-
plexity of external logic required is scalable depending on the
requirements of your design. This application note concen-
trates on the design of these external logic components and
on the interconnection of these components to the SVIC.
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Figure 1. Internal Block Diagram of the CY7C960
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Design Issues
DRAM Interface

The SVIC can be programmed (through the use of the WINS-
VIC software, as explained in the SVIC Users Guide) to oper-
ate in one of two modes: DRAM/IO or I/O Only. While in
DRAM/IO mode the SVIC is capable of controlling a bank of
DRAM through the use of RAS* (Row Address Strobe) and
CAS* (Column Address Strobe) signals along with performing
DRAM refresh (programmable timings). In order to speed up
the access to DRAM, every time the AS* (Address Strobe)
goes LOW on the VMEbus, the RAS* signal goes LOW on the
SVIC, causing the row address to be pre-latched into the
DRAM. If the cycle was not meant for the DRAM then no harm
was done, since a RAS-only cycle does not cause any read-
ing or writing from/to the DRAM. But if the cycle was meant
for the DRAM then half of the DRAM access has already oc-
curred with only the CAS part of the cycle remaining.

Due to the fact that the address passes through the
CY7C964s and not the SVIC itself, external buffers (244s) are
required to separate the row and column address from the full
address. Enabling these 244s at the proper time is accom-
plished by the ROW and COL outputs from the SVIC. 

Another important issue to deal with is distinguishing DRAM
accesses from I/O accesses (when DBE[3:0] are used as
CAS*). If the DBEs (Data Byte Enables) are programmed to
act as CAS*, an assertion of DBE due to an I/O access will
look like an assertion of CAS* to the DRAM, and will thus
complete a RAS-CAS DRAM access. A solution to this issue
is to gate a Chip Select from the SVIC with the DBEs to de-
termine when the CAS* input on the DRAM should be driven
LOW. An example of how this can be accomplished is found
in the Design Examples section that follows.
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Figure 2. Block Diagram of Slave VME Board using SVIC
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Swap Buffer

Most modern designs utilize memories that are 32 bits wide.
The VME64 Specification allows for transactions that are 8,
16, 32, and 64 bits wide, which require reads and writes to
resources in 8-, 16- and 32-bit-wide slices that may or may
not be aligned to word boundaries. If 8- or 16-bit-wide trans-
actions to 32-bit-wide local resources are to be allowed on
your board, a Swap Buffer, comprised of 245s and controlled
by the SVIC, needs to be included in the design of the slave
board. If transactions are to be limited to the size of the local
data size (i.e. only D32 to 32-bit-wide local data or only D16
to 16-bit-wide local data) the Swap Buffer can be omitted and
the local data bus can be tied directly to the CY7C964s. An
example of how to implement the Swap Buffer can be found
in the Design Examples section that follows.

Region Decoder

One of the most flexible features of the SVIC is the ability to
react differently depending on where in the slave board’s local
address map a VME transaction is destined. Think of the local
address map as being logically broken up into blocks of space
referred to as regions. The local address map can be broken
up into as many regions (up to 16) as required by your design.
The size of each region is completely arbitrary and each re-
gion need not be of the same size. For example, 4 MBs of
DRAM may sit in one region while 32K of SRAM may sit in
another. The SVIC is told which region of the local memory
map is being addressed based on what value is being assert-
ed onto the REGION inputs. 

The SVIC has four REGION inputs when in I/O Mode and
three REGION inputs when in DRAM Mode.   The value that
is asserted on the REGION inputs is the job of the Region
Decoder. The most common method used to determine which
REGION value should be asserted to the SVIC is VME ad-
dress decoding.

A comparison between the VME address that is placed on the
VMEbus by the Master, and the VME address space in which
the Slave board sits (Slave Base Address) will determine if
the current VME transaction is destined for this particular
Slave board. If the SVIC is to handle one and only one set of
VME transactions (i.e., always A16 and A24 transactions), a
comparison of the VME address and the Slave Base Address
will be all that is required when deciding which REGION value
to assert. In this example, a ‘true’ from the comparison logic
will indicate that it is this board that is being addressed and
that the region that has been programmed to allow A16 and
A24 transactions should be asserted to the SVIC’s REGION
inputs.

If the SVIC is required to react differently when accessing
different local resources, i.e. A16 (but not A24 or A32) trans-
actions when addressing SRAM space and A16 and A32 (but
not A24) transactions to DRAM space, the fact that it is this
board being addressed is not enough to determine which RE-
GION value to assert to the SVIC since the SVIC is required
to react differently depending on which part of SVIC local ad-
dress map is being addressed. In this case, further VME ad-
dress decoding must be done by the Region Decoder to de-
termine which region of the SVIC board is being addressed.

During initialization the SVIC is loaded with its configuration
parameters. The configuration parameters are chosen using
a free, Cypress-supplied software called WINSVIC. The
WINSVIC software allows you to choose the configuration

that is applicable to your design and outputs a file consisting
of your chosen parameters encoded into 380 bits. These 380
bits are fed into the SVIC during initialization to fully configure
the device. These configuration parameters consist of global
parameters (those parameters that define the general opera-
tion of the chip) and Region parameters (those that define
what type of VME transactions that the SVIC is allowed to
handle and which Chip Selects will be driven if the current
VME transaction is handled by the SVIC). 

The SVIC is loaded with 16 sets of Region parameters when
in I/O Mode and 8 sets of Region parameters when in DRAM
Mode. Out of these many sets of Region parameters only one
set is valid and being used to define the operation of the SVIC
at any one time. Which set of Region parameters that the
SVIC should consider valid is determined by the user through
the use of the REGION inputs (i.e., placing 3H on the RE-
GION inputs will tell the SVIC to use the Region number 3
parameters when deciding if the current VME transaction
should be handled).

The role that the Region parameters play in determining the
operation of the SVIC is as follows:

1. Master places VME address, VME data (if a write), Ad-
dress Modifier Codes (AM Codes), and strobes onto the 
VMEbus.

2. SVIC sees the strobes, waits a programmed period of time 
(known as the Decode Delay) and samples the REGION 
inputs.

At this time the SVIC knows what type of VME transactions
it will respond to.

3. SVIC looks at the AM Codes on the VMEbus (which define 
what type of transaction the Master is requesting) and 
compares the type of transaction requested with the types 
of transactions that it is allowed to handle (based on Re-
gion parameters).

4. If there was a match between requested and allowed trans-
actions, the SVIC will drive the programmed Chip Selects 
(CS) and will handle the requested transaction. If there 
was not a match the SVIC would ignore this VME transac-
tion.

Because the REGION inputs are driven by local logic, the
determination of which region is being addressed at any given
time is determined by the designer of the Region Decoder.
The purpose of the Region Decoder is to determine if the
address on the VMEbus falls into the address map of the
SVIC. The address map of the SVIC can consist of up to 16
different regions, each of which can be of different sizes.
Figure 3 is an example of how a VME address can be mapped
into regions. The first thing to note is that at least one region
must not exist in the local address map. In this example, Re-
gions 0 and 3 and Regions 7 through 15 do not exist in the
local address map. The SVIC should be programmed to ig-
nore all AM codes when the REGION inputs are being driven
with 0 or 3 or 7 through 15. When the VME address does not
fall within the Slave board’s address space, it is one of these
unused or ‘turned-off’ regions that should be asserted to the
SVIC.

Another thing to notice is how the address map is decoded
into regions. This example assumes that the SVIC is being
addressed when the most significant byte (A[31:24]) of the
address is FF (Slave Base Address = FFxxxxxx). The next
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nibble (A[23:20]) determines what region is being addressed
and the rest of the address (A[19:0]) is decoded as the offset
within the region. This address decoding scheme assumes
32-bit addresses. Because VME addresses can be of varying
sizes, a design that would allow accesses in different address
modes (A16, A32, etc.) will need to be aware of what address
mode is being used for each transaction. Because this infor-
mation is encoded in the AM Codes, the easiest thing to do is
to include the VMEbus AM Code along with the address when
decoding the region.

As this address map illustrates, regions need not be of the
same size. The regions do not need to be in numerical order
nor do all the regions need to appear in the address map.

Local Interrupts

The SVIC has one interrupt request pin (LIRQ*) available to
local resources. Assertion of the LIRQ* pin by local resources
causes a VME interrupt to occur. Upon acknowledgment of
the VME interrupt by a master, through the use of the IACK
daisy chain, the SVIC informs the local logic to place a Sta-
tus/ID word onto the local data bus. This Status/ID word is
read by the responding master and the interrupt acknowledge
sequence is complete.

If more than one interrupter exists on the local side of the
SVIC, each interrupter must share the LIRQ* pin but can drive
a different Status/ID word. It is the Status/ID word that truly
distinguishes one interrupter from another. If more than one

interrupt is pending at the same time it is up to local logic to
perform interrupt priority. The complexity and size of the local
interrupt logic is a function of the number of interrupters on
the local side and the priority algorithm being implemented. 

A64/A40 Support

The SVIC is capable of performing transactions in A64 and
A40 address space. A64 addresses are transmitted over the
VMEbus by multiplexing the 32-bit address and the 32-bit
data buses that are available to 6U and larger VME cards.
A40 addresses are transmitted over the VMEbus by multiplex-
ing the 24-bit address and the 16-bit data buses that are avail-
able to 3U and larger VME cards. To support A64/A40 BLTs,
the upper bits of the address (which are carried on the data
bus) must be latched into external buffers for use in later cy-
cles. The address is latched into and driven out of these latch-
es (373s) at the proper time by signals that are sourced by
the SVIC. If the SVIC is not programmed to handle A64 or A40
transactions then these external latches can be omitted from
the design.

CY7C964 Interface

CY7C964s are directly controlled by the SVIC for use as the
address and data glue logic between the VME and Local bus-
es. The actual interconnections between the SVIC and the
four CY7C964s is documented in the next section (Design
Examples).

MD32 Support

Additionally, the VME64 Specification supports 32-bit-wide
data transfers on 3U VME cards known as MD32 transac-
tions. 3U VME cards only have a 16-bit data bus and a 24-bit
address bus available to them. In order to transfer 32 bits of
data at a time, the two buses are multiplexed with two bytes
of data carried on the data bus and the other two bytes of data
being carried on the address bus. Additions to a design for
support of MD32 transactions include the control of the upper
two CY7C964’s DENIN* and DENIN1* (Data Enable In) in-
puts. The DENIN* and DENIN1* pins on 964-2 and 964-3
should be connected to the modified DENIN signals
(MOD_DENIN* and MOD_DENIN1*, respectively, see Figure
4) and are only required if D64 transactions are to be support-
ed on the same board.

Design Examples
DRAM Interface

Figure 5 illustrates how an SVIC can be interfaced to a bank
of DRAM. This example uses a 4-MB 70-ns SIMM as the
DRAM bank. This 4-MB SIMM requires ten bits of address
and uses a 32-bit (4-byte) data word. The SIMM also has a
separate CAS* (which is generated by the FLASH375) and
RAS* for each data byte. The FLASH375 filters out DBE[3:0]
assertions due to I/O access and allows DBE[3:0] assertions
meant for the DRAM to be passed out to the CAS[3:0] lines.

Three buffers (244s) are used for separating the row and col-
umn address from the local address. Enabling of the row and
column address buffers is accomplished by the SVIC by the
assertion of ROW and COL. The latching of the address into
the DRAM is controlled by the SVIC with the RAS* and CAS*
signals.
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Region 6

Region 4

FF1FFFFF

FF200000

FF3FFFFF

FF400000

FF7FFFF

FF800000

FFBFFFF

FFC00000

FFFFFFFF

FF000000

Figure 3. Example of an SVIC Address Map
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Additional logic only if MD32 and D64 supported on same board
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Figure 4. Additional Logic for MD32 Support



Using the Slave VIC (CY7C960/961)

7

OEA

OEB

INA0 OUTA0

INA1 OUTA1

INA2 OUTA2

INA3 OUTA3

INB0 OUTB0

INB1 OUTB1

INB2 OUTB2

INB3 OUTB3

74FCT244

LOCAL_ADDR2

LOCAL_ADDR3

LOCAL_ADDR4

LOCAL_ADDR5

LOCAL_ADDR6

LOCAL_ADDR7

LOCAL_ADDR8

LOCAL_ADDR9

DRAM_ADDR0

DRAM_ADDR1

DRAM_ADDR2

DRAM_ADDR3

DRAM_ADDR4

DRAM_ADDR5

DRAM_ADDR6

DRAM_ADDR7

OEA

OEB

INA0 OUTA0

INA1 OUTA1

INA2 OUTA2

INA3 OUTA3

INB0 OUTB0

INB1 OUTB1

INB2 OUTB2

INB3 OUTB3

74FCT244

LOCAL_ADDR10

LOCAL_ADDR11

LOCAL_ADDR12

LOCAL_ADDR13

DRAM_ADDR8

DRAM_ADDR9

DRAM_ADDR0

DRAM_ADDR1

OEA

OEB

INA0 OUTA0

INA1 OUTA1

INA2 OUTA2

INA3 OUTA3

INB0 OUTB0

INB1 OUTB1

INB2 OUTB2

INB3 OUTB3

74FCT244

LOCAL_ADDR14

LOCAL_ADDR15

LOCAL_ADDR16

LOCAL_ADDR17

LOCAL_ADDR18

LOCAL_ADDR19

LOCAL_ADDR20

LOCAL_ADDR21

DRAM_ADDR2

DRAM_ADDR3

DRAM_ADDR4

DRAM_ADDR5

DRAM_ADDR6

DRAM_ADDR7

DRAM_ADDR8

DRAM_ADDR9

LOCAL_ADDR1[21:2] DRAM_ADDR1[9:0]

COL

ROW

RAS*

CS0

CS1

DBE0

DBE1

DBE2

DBE3

RAS0*

RAS1*

RAS2*

RAS3*

CAS0*

CAS1*

CAS2*

CAS3*

SVIC

FLASH375

DRAM_ADDR[9:0]

DRAM_DATA[31:0]

Local
Data

4MB
DRAM

Figure 5. DRAM Interface Logic Example



Using the Slave VIC (CY7C960/961)

8

Swap Buffer

Figure 6 shows the implementation of a Swap Buffer on the
SVIC Board. The Swap Buffer is simply two ’245 transceivers
with the DIR and EN* control lines connected directly to the
SVIC. The purpose of the Swap Buffer is to place LD[31:16]
onto the LD[15:0] lines, and vice versa, for performing D16
transactions to 32-bit local resources.

Region Decoder

The Region Decoder for this example is designed to take full
advantage of the CY7C960/961. Each of the sixteen possible
regions can be individually addressed regardless of the VME
address space (A64, A40, A32, A24, and A16) being used.
Because of the amount of logic and I/O pins used in the SVIC
Board Region Decoder, it was decided to write the decoder in
VHDL (see Appendix A, VHDL Code) and program it into a
FLASH375 PLD. A simple diagram showing the inputs and out-
puts to our Region Decoder can be seen in Figure 7. The
Region Decoder itself would fit into a smaller PLD but since
several other parts of the example Board design were placed
into a PLD (such as the Interrupt Logic) the FLASH375 was
used due to the need for many I/O pins (especially for 32 bits
of address and 32 bits of data). Most Region Decoders should
require no more than 15–20 I/O pins and 50–100 gates.

We mapped the SVIC Board into the VME address space as
follows: the four most significant bits of the VME address are
decoded to determine if it is this board that is being ad-
dressed. If it is this board that is being addressed then the
next four significant bits are decoded as the region.

The challenge is to determine which are the most significant
address bits. For example, in A32 space the most significant
address bits start at A[31] but in A40 space the most signifi-
cant bits start at D[15]. The only way to know which address
space is being used by the VME Master that is initiating the
transaction is to decode the AM Codes from the VMEbus. The
AM Codes tell where the most significant VME address bits
lie and the address bits tell which region is being addressed
(if any).

The Region Decoder VHDL code begins with a CASE state-
ment that uses AM Codes to determine which addressing
mode is being used by the VME Master. The use of all 6 bits
of the AM Code in the CASE statement was for ease of read-
ing and not by necessity. All that would be required to deter-
mine the addressing mode is the three most significant bits of
the AM Code. 

Once the addressing mode is determined (i.e., the location of
the most significant address bits is found) it can be deter-
mined if it is this board that is being addressed. Performing
an address comparison on the four most significant address
bits determines this. For A64 and A40 transfers the address
bits themselves must be looked at, but for A32, A24, and A16
transfers the CY7C964s can be used to perform the compar-
ison.

Each CY7C964 performs a comparison between the 8 bits of
VME address that it is attached to and a Compare Address
and Mask value that are written into each CY7C964 during
configuration. A comparison between the 8 bits of VME ad-
dress and the Compare Address (w/Mask) will result in the
VCOMP output from the CY7C964 being driven LOW (see
the VMEbus Interface Handbook).

If the comparison produces a match it must be determined
which region is being addressed. For many designers this
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Figure 6. SWAP Buffer Implementation Example
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Figure 7. Inputs and Outputs of the Region Decoder Logic
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may be a fixed region that will require no further decoding of
the address. The SVIC Board allows all 16 regions to be ad-
dressed by a VME Master by driving the second most signif-
icant nibble of the address onto the REGION inputs. The driv-
ing of the REGION3 input of the SVIC is controlled by an input
to the Region Decoder on the SVIC Board called DRAM_IO.
This functionality was included to allow the SVIC Board to
function in both DRAM/IO Mode (3 REGION inputs) and I/O
Mode (4 REGION inputs) depending on how the SVIC is pro-
grammed. Most slave boards will operate in only one mode,
depending on what resources have been designed onto the
board, so it will be known how many REGION inputs must be
driven by the decoder thus eliminating the need for the
DRAM_IO input function.

Local Interrupts

The VHDL Code located in Appendix A contains the code
used on the SVIC Board for the Interrupt Logic. Figure 8
shows the inputs and outputs to the Local Interrupt Logic. The
SVIC Board is capable of generating VME interrupts from four
different local sources, each with its own Status/ID word. The
Interrupt Logic VHDL Code also handles AUTO ID and the
Compare and Mask loading of the CY7C964s.

LIRQ* (Local Interrupt Request) will be driven LOW when one
or more of the LIRQi* inputs on the FLASH375 are driven LOW.
When LDEN* (Local Data Enable) is driven LOW and MWB*
(Module Wants Bus) is HIGH, a value must be driven onto the
Local Data (LD) bus. The value that must be driven onto the
LD bus will either be a Status/ID associated with a local inter-
rupt, the STATUS/ID associated with VMEbus Initialization
(AUTO ID) or the Compare and Mask for the CY7C964s.

The Local Interrupts have been assigned priority in the VHDL
Code with LIRQ1* having the highest priority and LIRQ4* hav-
ing the lowest. Table 1 is a summary of what is driven onto
the Local Data bus when LDEN*=0.

A64/A40 Support

The A64/A40 Support built into the SVIC Board consists of
latches (’573/’373s) on the Local Data (LD) bus for use in
latching the address bits that are carried on the LD bus during
multiplexed address cycles (see Figure 9).

A40 support requires the latching of LD[15:0] while A64 sup-
port requires the latching of LD[31:0]. The control equations
for latching and enabling (LA_UP_ADDR and
EN_UP_ADDR) are located in Appendix A, VHDL Code.

LDEN*
PREN*
MWB*

LDS

LD[31:0]

vcc

LIRQ*

LIRQ1*

LIRQ2*

LIRQ3*

LIRQ4*

FLASH375
STATUS/ID

Figure 8. Inputs and Outputs to Local Interrupt Logic

Table 1. Summary of What Is Driven onto the Local Data 
Bus when LDEN*=0 

What is driven onto the 
Local Data bus

When it is driven onto the 
Local Data bus

Interrupt Status/ID LDEN*=0, MWB*=1, 
PREN*=1, LIRQi*=0

AUTO ID Status/ID LDEN*=0, MWB*=1, 
PREN*=1, LIRQi*=1

CY7C964 Compare LDEN*=0, MWB*=1, 
PREN*=1, LDS=1

CY7C964 Mask LDEN*=0, MWB*=1, 
PREN*=1, LDS=0
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CY7C964 Interface

The SVIC Board utilizes four CY7C964s to act as the bridge
between the VMEbus and the local buses. The interconnec-
tions between the CY7C961 and the CY7C964s are summa-
rized in Table 3. The table is organized with one row for each
CY7C964 pin (or bus for A, D, LA, LD) and one column per
each CY7C964 (964-0, 1, 2, 3). The last column of Table 3 is
for users of the CY7C960. An entry in this column should
replace the entries in the other columns in that row when the
CY7C960 is being used.

All signals are sourced from the SVIC unless the name of a
source appears in parentheses under the signal name. For
example, in the row below (Table 2): the LCIN* pin on the least
significant CY7C964 (964-0) should be connected to VCC, the
LCIN* on the next CY7C964 should be connected to GND,
LCIN* on 964-2 should be connected to the LCOUT* pin on

964-1 and LCIN* on 964-3 should be connected to the
LCOUT* pin on 964-2. Since the last column is empty there
is no difference in the connections to the LCIN* pin when
using the CY7C960 as apposed to using the CY7C961.

MD32 Support

MD32 support on the SVIC Board consists of creating modi-
fied DENIN*/DENIN1* (MOD_DENIN*/ MOD_DENIN1*) sig-
nals for use in control of the two most significant CY7C964s.
If MD32 and D64 transactions are to be supported on the
same board, the entries in the CY7C964 Interface table for
DENIN* and DENIN1* should be replaced with the entries in
Table 4.
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Figure 9. Additional Logic for A64/A40 Support
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Required Resistors

The following signals need pull-up or pull-down resistors:

PULL-UP: BLT*, MWB*, ABEN*, DENO*, PREN*

PULL-DOWN: LAEN, LADI

In addition, if the CY7C960 is being used, FC1 and LADO on
the CY7C964s must be tied LOW.

Table 2. Example Row from Table 3  

CY7C964 
Pin

964-0
LSB 964-1 964-2

964-3
MSB

If Using the 
CY7C960

LCIN* VCC GND LCOUT*
(964-1)

LCOUT*
(964-2)

Table 3. Connections Between the SVIC and Four CY7C964s 

CY7C964 
Pin

964-0
LSB 964-1 964-2

964-3
MSB

If Using the 
CY7C960

A[7:0] A[7:1],LWORD
(VME)

A[15:8]
(VME)

A[23:16]
(VME)

A[31:24]
(VME)

D[7:0] D[7:0]
(VME)

D[15:8]
(VME)

D[23:16]
(VME)

D[31:24]
(VME)

LA[7:0] LA[7:0]
(LOCAL)

LA[15:8]
(LOCAL)

LA[23:16]
(LOCAL)

LA[31:24]
(LOCAL)

LD[7:0] LD[7:0]
(LOCAL)

LD[15:8]
(LOCAL)

LD[23:16]
(LOCAL)

LD[31:24]
(LOCAL)

ABEN* ABEN* ABEN* ABEN* ABEN*

BLT* BLT* BLT* BLT* BLT* VCC

D64 D64 D64 D64 D64

DENIN* DENIN* DENIN* DENIN1* DENIN1*

DENIN1* DENIN1* DENIN1* DENIN* DENIN*

DENO* DENO* DENO* DENO* DENO*

FC1 FC1 FC1 FC1 FC1 GND

LCOUT* N/C LCIN*
(964-2)

LCIN*
(964-3)

N/C

LDS LDS LDS LDS LDS

LADI LADI LADI LADI LADI

LAEN LAEN LAEN321 LAEN321 LAEN321 VCC on 964-1,2,3
LAEN on 964-0

LEDI LEDI LEDI LEDI LEDI

LEDO LEDO LEDO LEDO LEDO

LADO VMECNT LADO LADO LADO GND

LCIN* VCC GND LCOUT*
(964-1)

LCOUT*
(964-2)

MWB* MWB* MWB* MWB* MWB* VCC

STROBE* STROBE* STROBE* STROBE* STROBE*

VCOMP* AS NEEDED AS NEEDED AS NEEDED AS NEEDED

VCIN* GND GND VCOUT*
(964-1)

VCOUT*
(964-2)

VCOUT* N/C VCIN*
(964-2)

VCIN*
(964-3)

N/C

Table 4. Modified DENIN connections for MD32 Support 

CY7C964
Pin 964-2 964-3

DENIN* MOD_DENIN* MOD_DENIN*

DENIN1* MOD_DENIN1* MOD_DENIN1*
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Serial PROM

The SVIC needs to be configured at power-up. The configu-
ration consists of approximately 380 bits of serial data into the
part from either the VMEbus or through the use of a serial
PROM from the local bus. There are several serial PROMs
that are compatible with the SVIC: the AT&T ATT1718 and
ATT1736, Xilinx XC1718, XC1736 and XC1765 and Atmel
‘Configurator’ AT17C65, AT17C128. The numbers following
the 17 in each of the part numbers indicate the number of
Kbits that the part holds. All of these PROMs have a program-
mable RESET/Output Enable (R/OE) pin, and the SVIC ex-
pects the RESET to be active HIGH. The RESET/OE on
these PROMs are programmed to be active HIGH by writing
ones into a special memory location. The memory location
that must be written (with ones) varies by PROM size. The
memory addresses are shown in Table 5.

Figure 10 illustrates the connections between the SVIC and
the serial PROM. The R/OE pin should be connected to the
PREN* output of the SVIC. R/OE should also have a pull-up
resistor to ensure that the internal pointer is reset to the first

position. The Chip Enable (CE) pin can be either tied LOW or
tied to the R/OE pin, the Clock (CLK) pin should be connected
to the LA[1]/PCLK pin of the SVIC and, finally, the Data (D)
pin should be connected to the LA[2]/PDATA pin on the SVIC.
Note that PCLK is a resistive programmable pin, a pull-up
resistor is connected to PCLK; this will program the CY7C960
to source PCLK to the PROM.

Summary
This application note has shown how easy it is to design a
fully VME64-compliant Slave VME board using the Cypress
Slave VME Interface Controller (SVIC) Family
(CY7C960/961). Along with four CY7C964s (Bus Interface
Chips), a PLD, and a small amount of TTL logic, a Slave VME
board capable of D8 through D64/A16 through A64 transac-
tions can easily be designed in a short amount of time.

Discrete components and VHDL code were used to design
the little off-chip logic that was used on the SVIC Board. Along
with examples on how to interface the SVIC to the VMEbus,
significant examples on how to interface the SVIC to DRAM
and I/O were also discussed. The design of optional logic,
such as the SWAP Buffer and Local Interrupt logic was ex-
plained for those boards requiring it.

A discussion of regions was included to help in the under-
standing of this topic. Also included for completeness was a
discussion on which serial PROMS could be used and where
resistors should be added.

The CY7C960 or CY7C961 along with four CY7C964s com-
prises the most complete and easy to design fully
VME64-compliant Slave VME Interface on the market today.

Table 5. PROM Addresses 

PROM Size Address

18K 8DC-8DF

36K 11B8-11BB

65K 2000-2003

128K 4000-4003

Active HIGH Reset: fill address with ones

Figure 10. Connection of SVIC to Serial PROM
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LA[2]/PDATA

R/OE

CE*

CLK

VCC

Data

SVIC PROM
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Appendix A.  VDHL Code 

-- vhdl code for the SVIC Board

use work.GATESPKG.all;

use work.cypress.all;

use work.rtlpkg.all;

ENTITY logic IS

PORT (D64, LDS, DENIN, PREN, DENIN1, LEDI, LDEN, MWB, LIRQ1, LIRQ2, LIRQ3, LIRQ4, DRAM_IO, 

CS0, CS1, DBE0, DBE1, DBE2, DBE3, RW, RESET, SYSRESET: IN BIT;

MOD_DENIN, MOD_DENIN1, LA_UP_ADDR, EN_UP_ADDR, LIRQ, CE0, CE1, CE2,CE3, CAS0, CAS1, 

CAS2, CAS3, OE, SVIC_RESET: OUT BIT;

SELECTLM: INOUT BIT;

LA: IN x01z_VECTOR(31 downto 8);

AM:  IN BIT_VECTOR(5 downto 0);

VCOMP: IN BIT_VECTOR(3 downto 1);

REGION:  OUT x01z_VECTOR(3 downto 0);

LD:  INOUT x01z_VECTOR(31 downto 0));

ATTRIBUTE PIN_NUMBERS OF logic : ENTITY IS

”LD(0):2 LD(1):3 LD(2):4 LD(3):5 LD(4):6 LD(5):7 LD(6):8 LD(7):9”

&”LD(8):11 LD(9):12 LD(10):13 LD(11):14 LD(12):15 LD(13):16 LD(14):17 LD(15):18”

&”LD(16):23 LD(17):24 LD(18):25 LD(19):26 LD(20):27 LD(21):28 LD(22):29 LD(23):30”

&”LD(24):32 LD(25):33 LD(26):34 LD(27):35 LD(28):36 LD(29):37 LD(30):38 LD(31):39”

&”LA(8):159 LA(9):158 LA(10):157 LA(11):156 LA(12):155 LA(13):154 LA(14):153 

LA(15):152”

&”LA(16):150 LA(17):149 LA(18):148 LA(19):147 LA(20):146 LA(21):145 LA(22):144 

LA(23):143”

&”LA(24):138 LA(25):137 LA(26):136 LA(27):135 LA(28):134 LA(29):133 LA(30):132 

LA(31):131”

&”AM(0):42 AM(1):43 AM(2):44 AM(3):45 AM(4):46 AM(5):47”

&”VCOMP(3):122 VCOMP(2):123 VCOMP(1):124”

&”REGION(0):113” 

&”REGION(1):51 REGION(2):58 REGION(3):53”

&”LIRQ1:85 LIRQ2:84 LIRQ3:83 LIRQ4:82”

&”DENIN:119 DENIN1:118 MOD_DENIN:117 MOD_DENIN1:116 LA_UP_ADDR:115 EN_UP_ADDR:114”

&”D64:139 LDS:129 PREN:72 LEDI:128 LDEN:127 MWB:126 SELECTLM:125”

&”LIRQ:75 DRAM_IO:98 CE0:89 CE1:88 CE2:87 CE3:86 DBE0:94 DBE1:93 DBE2:92 DBE3:91,

CS0:19”

&”RW:77 OE:78  SYSRESET:66 RESET:67 SVIC_RESET:68 CAS0:97 CAS1:96 CAS2:95 CAS3:112”;

END logic;
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ARCHITECTURE arch_logic OF logic IS

signal VL1N18: bit;

signal VL1N26: bit;

signal VL1N28: bit;

signal VL1N31: bit;

signal VL1N36: bit;

signal VL1N40: bit;

signal STATUS_ID: BIT_VECTOR(31 downto 0) := X”FFFFFFFF”;

signal STATUS_EN: BIT  := ’0’; 

signal REGION_TEMP:  BIT;

-- for all: AND2 use entity work.AND2(archAND2);

-- for all: INV use entity work.INV(archINV);

-- for all: AND3 use entity work.AND3(archAND3);

-- for all: OR2 use entity work.OR2(archOR2);

begin

-------------------------------------------------------------------------------------------

-- This is the logic for SELECTLM (when writing the REMOTE MASTER -- registers)

-------------------------------------------------------------------------------------------

SELECTLM <= ’0’ WHEN ((FXB(LA(31)) = ’1’) AND (FXB(LA(30)) = ’1’) AND (FXB(LA(29)) = ’0’) AND 

(FXB(LA(28)) = ’0’)) ELSE ’1’;

-------------------------------------------------------------------------------------------

-- This is the logic for RESET 

-------------------------------------------------------------------------------------------

SVIC_RESET <= RESET AND SYSRESET;

-------------------------------------------------------------------------------------------

-- This is the logic for driving the CASi inputs to DRAM 

-- CASi is driven both during DRAM refresh and data access but not during I/O access

-------------------------------------------------------------------------------------------

CAS0 <= DBE3 OR (CS1 AND (NOT CS0));

CAS1 <= DBE2 OR (CS1 AND (NOT CS0));

CAS2 <= DBE1 OR (CS1 AND (NOT CS0));

CAS3 <= DBE0 OR (CS1 AND (NOT CS0));

-------------------------------------------------------------------------------------------

-- This is the logic for the latch and enable signals for A40/A64 UPPER 

-- ADDRESS

-------------------------------------------------------------------------------------------

LA_UP_ADDR <= (NOT SELECTLM) AND LEDI;

EN_UP_ADDR <= LDEN OR MWB;

Appendix A.  VDHL Code  (continued)
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-------------------------------------------------------------------------------------------

-- This is the logic for controlling the CE*, OE* signals to each bank of DRAM

-- SRAM in I/O space

-------------------------------------------------------------------------------------------

CE0 <=  DBE3 OR CS0;

CE1 <=  DBE2 OR CS0;

CE2 <=  DBE1 OR CS0;

CE3 <=  DBE0 OR CS0;

OE <=   NOT RW;

-------------------------------------------------------------------------------------------

-- This is the cross-connected SWAP BUFFER logic required for MD32 and D64 

-- on same board 

-------------------------------------------------------------------------------------------

VL1I1: AND2

        port map(A => D64,

                 B => VL1N31,

                 Q => VL1N28);

    VL1I11: INV

        port map(A => DENIN,

                 QN => VL1N18);

VL1I2: AND3

        port map(A => DENIN1,

                 B => VL1N18,

                 C => D64,

                 Q => VL1N26);

    VL1I3: OR2

        port map(A => VL1N26,

                 B => VL1N28,

                 Q => VL1N31);

    VL1I33: AND2

        port map(A => VL1N36,

                 B => VL1N31,

                 Q => VL1N40);

    VL1I38: OR2

        port map(A => DENIN1,

                 B => VL1N40,

                 Q => MOD_DENIN);

    VL1I39: OR2

        port map(A => VL1N40,

                 B => DENIN,

                 Q => MOD_DENIN1);

    VL1I4: INV

        port map(A => LDS,

                 QN => VL1N36);

Appendix A.  VDHL Code  (continued)
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-------------------------------------------------------------------------------------------

-- This is the REGION DECODER 

-------------------------------------------------------------------------------------------

region: PROCESS

BEGIN

CASE AM is

WHEN ”000100” | ”000011” | ”000001” | ”000000” =>  --A64 AM Codes

IF LD(31 downto 28) = ”1110” THEN

REGION(2 downto 0) <= LD(26 downto 24);

REGION_TEMP <= FXB(LD(27));

ELSE REGION(2 downto 0) <= ”000”;

           REGION_TEMP <= ’0’;

END IF;

WHEN ”110100” | ”110101” | ”110111” =>   --A40 AM Codes

IF LD(15 downto 12) = ”1110” THEN 

REGION(2 downto 0) <= LD(10 downto 8);

REGION_TEMP <= FXB(LD(11));

ELSE    REGION(2 downto 0) <= ”000”;    

REGION_TEMP <= ’0’;

END IF;

WHEN ”001000” | ”001001” | ”001010” | ”001011” | ”001100” | ”001101” | ”001110” | 

”001111” =>  --A32 AM Codes

IF VCOMP(3) = ’0’ THEN 

REGION(2 downto 0) <= LA(26 downto 24);

REGION_TEMP <= FXB(LA(27));

ELSE    REGION(2 downto 0) <= ”000”;    

REGION_TEMP <= ’0’;

END IF;

WHEN ”101111” | ”110010” | ”111000” | ”111001” | ”111010” | ”111011” | ”111100” | 

”111101” | ”111110” | ”111111” =>  --A24 AM Codes

IF VCOMP(2) = ’0’ THEN 

REGION(2 downto 0) <= LA(18 downto 16);

REGION_TEMP <= FXB(LA(19));

ELSE    REGION(2 downto 0) <= ”000”;    

REGION_TEMP <= ’0’;

END IF;

WHEN ”101001” | ”101100” | ”101101” =>  --A16 AM Codes

IF VCOMP(1) = ’0’ THEN 

REGION(2 downto 0) <= LA(10 downto 8);

REGION_TEMP <= FXB(LA(11));

ELSE    REGION(2 downto 0) <= ”000”;    

REGION_TEMP <= ’0’;

END IF;

Appendix A.  VDHL Code  (continued)
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WHEN ”011000” | ”011001” | ”011010” | ”011011” | ”011100” | ”011101” | ”011110” | 

”011111” =>  --USER1 AM Codes

IF VCOMP(3) = ’0’ THEN   --A32 Modes

REGION(2 downto 0) <= ”101”;  --FORCED TO REGION 5

REGION_TEMP <= ’0’;

ELSE    REGION(2 downto 0) <= ”000”;    

REGION_TEMP <= ’0’;

END IF;

WHEN ”010000” | ”010001” | ”010010” | ”010011” | ”010100” | ”010101” | ”010110” | 

”010111” =>  --USER2 AM Codes

IF VCOMP(2) = ’0’ THEN 

REGION(2 downto 0) <= ”010”;  --FORCED TO REGION 10

REGION_TEMP <= ’1’;

ELSE    REGION(2 downto 0) <= ”000”;    

REGION_TEMP <= ’0’;

END IF;

WHEN OTHERS =>  --DEFAULT REGION

REGION(2 downto 0) <= ”000”;

REGION_TEMP <= ’0’;

END CASE;

END PROCESS;

region_buffer: triout PORT MAP(REGION_TEMP, DRAM_IO, REGION(3));  

--DON’T DRIVE REGION(3) WHEN IN DRAM MODE (DRAM_IO = 0)

-------------------------------------------------------------------------------------------

-- This is the INTERRUPT LOGIC

-------------------------------------------------------------------------------------------

LIRQ <= (LIRQ1 AND LIRQ2) AND (LIRQ3 AND LIRQ4);

STATUS_EN <= (NOT LDEN) AND MWB;

b1: FOR i IN 0 TO 31 GENERATE

bx: triout PORT MAP(STATUS_ID(i), STATUS_EN, LD(i));

END GENERATE;

interrupt:PROCESS

BEGIN

IF LDEN = ’0’ THEN

IF (LIRQ1 = ’0’ AND PREN =’1’) THEN STATUS_ID(7 downto 0) <= X”01”;

ELSIF (LIRQ2 = ’0’ AND PREN = ’1’) THEN STATUS_ID(7 downto 0) <= X”02”;

ELSIF (LIRQ3 = ’0’ AND PREN = ’1’) THEN STATUS_ID(7 downto 0) <= X”03”;

ELSIF (LIRQ4 = ’0’ AND PREN = ’1’) THEN STATUS_ID(7 downto 0) <= X”04”;

ELSIF (PREN = ’1’) THEN STATUS_ID(7 downto 0) <=”01010101”;

ELSIF (PREN = ’1’ AND STROBE = ‘0’ AND LDS = ’1’) THEN STATUS_ID <= X”EEEEEE00”; --compare

ELSIF (PREN = ’1’ AND STROBE = ‘0’ AND LDS = ’0’) THEN STATUS_ID <= X”0F0F0FFF”; --mask

END IF;

END IF;

END PROCESS;

end arch_logic;

Appendix A.  VDHL Code  (continued)


