

Analytica Chimica Acta 466 (2002) 109-116

ANALYTICA CHIMICA ACTA

www.elsevier.com/locate/aca

Separation of Sr from Ca, Ba and Ra by means of Ca(OH)₂ and Ba(Ra)Cl₂ or Ba(Ra)SO₄ for the determination of radiostrontium

Qingjiang Chen, Xiaolin Hou*, Yixuan Yu, Henning Dahlgaard, Sven P. Nielsen

Risø National Laboratory, Department of Radiation Research, NUK-202, P.O. Box 49, DK-4000 Roskilde, Denmark

Received 25 March 2002; received in revised form 2 May 2002; accepted 17 June 2002

Abstract

A simple procedure is developed to separate Sr from a large amount of Ca, which relies on the insolubility of Ca(OH)₂ in alkaline solution. Calcium is quantitatively separated from Sr and more than 95% of Sr is recovered from a sample with as much as 50 g of Ca and a Ca/Sr mole ratio of 250. A new procedure for the separation of Sr from Ba and Ra is also investigated, which is based on the difference in solubility of the chlorides of Sr, Ba and Ra in HCl media. In 9.5 mol 1^{-1} HCl or 7.5 mol 1^{-1} HCl-10% acetone media, >97% of Ba and Ra can be removed by Ba(Ra)Cl₂ precipitation, and >94% of Sr was recovered. In the determination of 9^{0} Sr by measuring 9^{0} Y, the separation of Ra and Ba can easily be carried out by precipitation of Ba and Ra as Ba(Ra)SO₄, while Y can be quantitatively recovered in the solution. By this method, a further separation of 9^{0} Y from radiostrontium can be completed. The new separation procedure has been successfully used for the determination of 9^{0} Sr in samples with high Ca content, such as 451 of seawater and 2001 of drinking water. The analytical quality of the results is comparable to that of the traditional method using fuming nitric acid and BaCrO₄ precipitation.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Strontium-90; Separation; Calcium; Radium; Barium; Water

1. Introduction

Radiostrontium (⁹⁰Sr and ⁸⁹Sr) has been released to the environment by global fallout following atmospheric nuclear explosions, by nuclear waste discharges and fallout from the Chernobyl accident. As it has a short half-life (50.5 days), ⁸⁹Sr quickly decays to undetectable levels, while ⁹⁰Sr is radiologically more important because of its longer half-life (28.78 years) and accumulation in bone tissue. Radiostrontium can also be used as an oceanographic tracer to investigate the movement of water mass in the ocean [1–3]. Cost-effective and relatively simple procedures

for determination of radiostrontium are desirable for radioecology, environmental radioactivity and oceanographic studies, which often require the analysis of a large number of samples. Both 90Sr and 89Sr are β⁻ emitters. Determination by direct measurement of ⁹⁰Sr and ⁸⁹Sr or the short-lived daughter ⁹⁰Y (also a pure β⁻ emitter) using a proportional counter or liquid scintillation counter requires previous chemical separation and preconcentration in order to avoid interference from other radionuclides and problems from self-absorption due to the presence of calcium in the sample. In various analytical procedures for ⁹⁰Sr, a more time-consuming and expensive step is the separation of Sr from Ca, Ba and Ra. Many techniques for separation of strontium from matrices have been reported, such as liquid-liquid extraction using

^{*} Corresponding author. Fax: +45-4677-5347. *E-mail address:* xiaolin.hou@risoe.dk (X. Hou).

a crown ether [4,5], liquid membrane extraction [6], extraction chromatography [7] using Sr–Spec resin [8,9], ion-exchange [9–13] and strontium rhodizonate and CaHPO₄ precipitation [13,14]. But they cannot be used for the separation of Sr from a large amount of Ca. One general method based on the insolubility of strontium nitrate in strong nitric acid is still widely used for separation of Sr from Ca [15]. For the analysis of some samples with a high calcium content such as a large volume of seawater (~501) and drinking water (~2001), more than 31 of fuming nitric acid has to be used for this separation. It is time-consuming, expensive and destructive to laboratory apparatus, also hazardous for the operator.

Strontium is usually separated from isotopes of barium by BaCrO₄ precipitation [15], but the operation is difficult and time-consuming due to critical control of pH of the solution and removal of excess Cr afterwards. It was supposed that naturally occurring isotopes of radium (²²⁶Ra, ²²⁸Ra) could also be removed with Ba in this step. This is important for analysis of low-level environmental samples, because radium is the main contributor to radioactivity in these samples, with activity levels higher than those of ⁹⁰Sr and ⁸⁹Sr. However, no detail of the separation efficiency of Ra by Ba(Ra)CrO₄ method is available.

Patti and Hernandez [16] used Ca(OH)₂ precipitation to separate Ca from Sr for the preparation of a calcium salt with a low concentration of strontium, but no decontamination of Ca from Sr was investigated and no application of this method for the determination of radiostrontium was reported. In the present work, the separation of Sr from a large amount of Ca by Ca(OH)₂ precipitation is investigated for the determination of radiostrontium. We noticed that the solubilities of SrCl₂ and BaCl₂ are different in different concentrations of hydrochloric acid. By using this feature, the separation of Sr from Ba and Ra is investigated.

The determination of ⁹⁰Sr is usually carried out by measuring its short-lived daughter ⁹⁰Y, and the concentration of ⁸⁹Sr is calculated by the difference between the total radioactivity of isotopes of strontium and ⁹⁰Sr measured by ⁹⁰Y. Ba(Ra)SO₄ precipitation is widely used for the separation of Ra from various matrices, while Y₂(SO₄)₃ is soluble. Thus, this feature can be used to separate Ba and Ra, if only ⁹⁰Sr need to be determined. Meanwhile, ⁹⁰Sr can also be

precipitated with Ba(Ra)SO₄ as SrSO₄ and is further decontaminated. In this work, the separation of Y from Ba, Sr and Ra by Ba(Ra)SO₄ precipitation is also investigated.

2. Experimental

2.1. Chemical reagents

All chemicals used in the experiment were analytical-grade reagents. ¹³³Ba tracer was purchased from Eckert & Ziegler Co. (Valencia, CA 91355) and diluted to 3020 Bq ml⁻¹ in 1 mol l⁻¹ HCl. ²²⁶Ra (INST-SRM-4967) was purchased from the National Institute of Standards and Technology (NIST, Gaithersburg, MA 20899) and diluted to 33 Bq ml⁻¹ in 1 mol l⁻¹ HCl. ⁸⁵Sr tracer was purchased from Isotope Products Laboratories (3017N San Fernando Blvd, Burbank, CA 91504) and diluted to 2100 Bq ml⁻¹ in 1 mol l⁻¹ HCl.

2.2. Samples

Seawater samples were collected in Danish waters from Hesslø in Kattegat and Møen in the Baltic Sea. The drinking water samples were collected at different locations in Denmark.

2.3. Analytical procedure

2.3.1. Separation of strontium from calcium by $Ca(OH)_2$ precipitation

Fifty grams of calcium as CaCl₂·2H₂O and 0.33 g of strontium as SrCl₂·2H₂O was taken in a 51 beaker, and 2.51 of 0.3 mol 1⁻¹ HCl was added to dissolve them. Then 1050 Bq of ⁸⁵Sr tracer was added, and the solution was stirred for 5 min. Next 6 mol 1⁻¹ NaOH was added to give a NaOH concentration of 0.2 mol 1⁻¹, and the calcium was precipitated as Ca(OH)₂. The slurry was transferred to a centrifuge tube and centrifuged to separate the Ca(OH)₂ precipitate at 3000 rpm for 10 min. The precipitate was washed with 0.2 mol 1⁻¹ NaOH and the washings were combined with the supernatant. A few drops of 6 mol 1⁻¹ NaOH were added to the supernatant to check if Ca is completely precipitated. Na₂CO₃ was added to the hot supernatant and the SrCO₃

precipitate separated by centrifugation. The radioactivity of ⁸⁵Sr in the Ca(OH)₂ and SrCO₃ fractions were measured by a NaI well detector.

Calcium in the supernatant, which was not precipitated, was measured gravimetrically as CaC₂O₄·2H₂O. In this case, no Sr carrier was added to the original solution.

2.3.2. Separation of Sr from Ba by BaCl₂ precipitation

A solution (2 ml) containing 15 mg of Ba²⁺ and 0.3 g of Sr²⁺ was taken in a 100 ml centrifuge tube, and 0.5 ml of 3020 Bq ml⁻¹ ¹³³Ba and 0.5 ml of 2100 Bq ml⁻¹ ⁸⁵Sr tracers were added. Then 12 mol 1⁻¹ HCl, deionized water and acetone were added to give a range of HCl and acetone concentrations, with a total volume of 40 ml. The suspension was stirred for 2 min, and centrifuge at 3000 rpm for 10 min. The supernatant was transferred to another centrifuge tube, the precipitate was dissolved in water and transferred to a 25 ml polythene counting vial for measurement.

Next, 15 mg of Ba²⁺ was added to the supernatant. After stirring for 2 min, the precipitate was separated by centrifugation. The supernatant was transferred to a counting vial for measurement, the precipitate was dissolved in water and transferred to another counting container. The radioactivity of 85 Sr and 133 Ba in the supernatant and precipitate fractions were measured with a HpGe detector by counting the 356 keV γ -rays of 133 Ba and the 514 keV γ -rays of 85 Sr.

2.3.3. Separation of Sr from Ra by Ba(Ra)Cl₂ precipitation

The procedure is the same as that for the separation of Sr from Ba, except that 1.0 ml of 33 Bq ml $^{-1}$ 226 Ra was added instead of 85 Sr and 133 Ba tracers. The radioactivity of 226 Ra in the precipitate and supernatant was measured with a Ge detector by counting the $185 \, \text{keV}$ γ -rays of 226 Ra.

2.3.4. Separation of Sr from Ra by Ba(Ra)CrO₄ precipitation

A solution (2 ml) containing 15 mg of Ba²⁺ and 0.3 g of Sr²⁺ was taken in a beaker, 1.0 ml of 33 Bq ml⁻¹ ²²⁶Ra, was added, the pH of the solution was adjusted to 4–6, 10 ml of HAc–NH₄Ac buffer (pH 5.5) was added and the solution heated on a

hotplate to near boiling. A $1.0 \,\mathrm{ml}$ of $0.3 \,\mathrm{mol}\,\mathrm{l}^{-1}$ Na₂CrO₄ was added to the solution, and the mixture heated for 30 min. The suspension was cooled to room temperature, and filtered through a 0.45 µm membrane with suction. The precipitate was washed with 3 ml of water, and the washings were combined with the filtrate. The precipitate on the filter was transferred to a counting container for measurement. Fifteen milligrams of Ba^{2+} and 1.0 ml of 0.3 mol 1^{-1} Na₂CrO₄ were added to the filtrate, which was heated on a hotplate for 30 min. After cooling to room temperature, it was filtered through a 0.45 µm membrane. The precipitate was washed with 3 ml of water, the precipitate on the filter was transferred to a counting vial and the filtrate was transferred to another container for measurement. ²²⁶Ra in the precipitate and supernatant was measured with a HpGe detector.

2.3.5. Separation of Y from Ba by BaSO₄ precipitation

 $SrCl_2 \cdot H_2O$ (1 g) and 28.66 mg of $Y_2(C_2O_4)_3 \cdot H_2O$ was taken in a centrifuge tube and dissolved in 60 ml of 0.4 mol l⁻¹ HCl. Ammonia solution was added to adjust the pH to >10 and the mixture heated for a while; a Y(OH)₃ precipitation was formed. The mixture was centrifuged and the supernatant transferred to a beaker. One millilitre of $6 \, \text{mol} \, l^{-1} \, HNO_3$ was added to the centrifuge tube to dissolve the Y(OH)₃ precipitate and the sample was transferred to a smaller tube. Wash the larger tube with 0.1 mol l⁻¹ HNO₃ and combine the washings with the solution to make the total volume 20 ml. Five milligrams of Sr²⁺ carrier was added to the solution and the mixture stirred. Twenty-five percent ammonia solution was added to adjust the pH to >10, the suspension allowed to stand for 10 min and the precipitate was separated by centrifugation. One millilitre of 6 mol 1⁻¹ HNO₃ was added to dissolve the precipitate and to adjust the volume to 20 ml. Five milligrams of Ba²⁺carier and 2 mg of Sr²⁺ carrier were added, the mixture stirred for 1 min. One millilitre of 2 mol l⁻¹ H₂SO₄ was added, the mixture stirred to form BaSO₄ and SrSO₄, and centrifuged to separate the precipitate. The supernatant was transferred to another centrifuge tube, and 25% ammonia solution was added to adjust the pH to >10. After stirring, and standing for 5 min, the mixture was centrifuged to separate the precipitate. Five drops of $6 \,\mathrm{mol}\,\mathrm{l}^{-1}$ HNO₃ were added to dissolve the sample, 20 ml of 8% $H_2C_2O_4$, solution was added, and the mixture was stirred and heated. The solution was passed through a filter, and the $Y_2(C_2O_4)_3 \cdot H_2O$ precipitate on the filter was washed with water and ethanol. The precipitate was dried and weighed to calculate the chemical yield of Y.

2.3.6. Separation of Y from Ba by BaSO₄ precipitation using ¹³³Ba tracer

A solution (20 ml) containing 3.0 mg of Y^{2+} , 2.5 mg of Ba $^{2+}$ and 3.0 g of Sr^{2+} was taken in a beaker, 1.0 ml of 2100 Bq ml $^{-1}$ 133 Ba was added and stirred for 3 min. A total of 1.0 ml of 2 mol I^{-1} H_2SO_4 was added and stirred for 2 min. The suspension was filtered through a 0.45 μ m membrane and washed with 5 ml of 0.5 mol I^{-1} H_2SO_4 . The precipitate on the filter was transferred to a counting vial; the filtrate was transferred to another container for measurement of I^{133} Ba.

2.3.7. Separation of Y from Ra by Ba(Ra)SO₄ precipitation

The procedure was the same as that for separation of Y from Ba, except 1.0 ml of 33 Bq ml⁻¹ ²²⁶Ra tracer was added instead of ¹³³Ba tracer.

2.3.8. Determination of ⁹⁰Sr in seawater and drinking water

2.3.8.1. Procedure for determination of ⁹⁰Sr in 45 l of seawater. Transfer 451 of seawater to a 1001 flask, add ⁸⁵Sr tracer and 1 g of SrCl₂·H₂O. Stir for 10 min. Adjust the pH to 8–10 using NaOH. Heat to boiling. Add 1-1.51 of $2 \text{ mol } 1^{-1}$ (NH₄)₂CO₃ and stir with a rod for 1 min (do not use air bubbles). Cover the vessel with a glass disc. Stand overnight. Discard the supernatant. Dissolve the precipitate of SrCO₃/CaCO₃ in 1000 ml of 4 mol 1⁻¹ HNO₃. Wash the vessel twice with 500 ml of H₂O each time. Combine the washings with the dissolved precipitate in a beaker. Add 10 mg of Fe³⁺, heat to boiling to completely dissolve the material and cool to room temperature. Add 6 mol 1^{-1} NaOH to adjust the pH to 10, add more $6 \text{ mol } 1^{-1}$ NaOH to make the concentration of NaOH to be $0.2 \text{ mol } l^{-1}$ and stir for 1 min (until there is no white precipitate in the supernatant). Transfer the sample to a 250 ml centrifuge tube and centrifuge. Transfer the supernatant to another beaker. Wash the precipitate with 150 ml of 0.2 mol l⁻¹ NaOH, and combine the

washings with the supernatant. Heat the solution to boiling. Add Na_2CO_3 to the solution (5 g of Na_2CO_3 per 100 ml of solution). Stir and heat the sample on a 250 °C hotplate for 1 h. Cool, centrifuge to separate the precipitate, and discard the supernatant. Add 10 ml of 8 mol l^{-1} HNO₃ to dissolve the precipitate. Repeat the procedure from addition of 6 mol l^{-1} NaOH. Dissolve the precipitate with 4 ml of 6 mol l^{-1} HNO₃. Add 5 mg of Fe³⁺, stir and add NaOH to adjust the pH to 10. After centrifuging, transfer the supernatant to another tube. Add 12 mg of Y^{3+} carrier and 5 mg of Y^{3+} carrier to the supernatant.

Take part of the solution to measure the chemical yield of strontium, $Y = (C_p W g_2)/(C_{st} W_1 g_1)$, where W is the total weight of solution, W_1 the weight of solution taken and measured, C_p the measured counts of strontium tracer in the sample, g_1 the amount of tracer added to the sample, g_2 the amount of tracer in the standard, and C_{st} is the counts for the standard.

Combine the solutions after measurement, and leave the solution for 3 weeks for growth of the daughter nuclide 90Y. Add NH₃ to the solution to adjust the pH to >10 and heat for a few minutes. Centrifuge to separate the precipitate. Add 1 ml of 6 mol 1⁻¹ HNO₃ to dissolve the precipitate and transfer the sample to a smaller tube. Wash the larger tube with $0.1 \text{ mol } 1^{-1}$ HNO₃ and combine the washings with the dissolved, material to make the final volume 20 ml. Add 5 mg of Ba²⁺carier and 2 mg of Sr²⁺ carrier to the solution, and stir for 1 min. Add 1 ml of 2 mol 1⁻¹ H₂SO₄ and stir to precipitate BaSO₄ and SrSO₄. Centrifuge to separate the precipitate and transfer the supernatant to another tube. Add 25% ammonia solution to the supernatant to adjust the pH to >10, stir, and leave for 5 min. Centrifuge to separate the precipitate, and discard the supernatant. Add five drops of 6 mol l⁻¹ HNO₃ to dissolve the precipitate. Add 20 ml of 8% H₂C₂O₄·2H₂O solution, stir and heat. After cooling to the room temperature, filter and wash the precipitate twice with water and ethanol. Dry and weigh the Y₂(C₂O₄)₃·H₂O to calculate the chemical yield of Y. Measure the radioactivity of 90 Y using an anti-coincident gas flow GM counter (Risø).

2.3.8.2. Determination of ⁹⁰Sr in 200 l of drinking water and lake water. Transfer the first 1001 of water to a 2001 flask, add 30 g of CaCl₂·6H₂O, ⁸⁵Sr tracer and 1 g of SrCl₂·H₂O, and stir for 10 min.

Adjust the pH to 8–10 with 25% ammonia solution. Heat to boiling. Add 21 of 2 mol l⁻¹ (NH₄)₂CO₃ and stir for 1 min (do not use air bubbles). Cover the vessel with a glass disc. Allow to stand overnight or over a weekend. Siphon off the supernatant, and dissolve the precipitate of SrCO₃ in 1000 ml of 4 mol l⁻¹ HNO₃.

Add the second 1001 of water to the large flask, stir for 10 min with air bobbles. Adjust the pH to 8–10 with 25% ammonia solution. Heat to boiling. Add 21 of 2 mol 1^{-1} (NH₄)₂CO₃ and stir for 1 min (do not use air bubbles). Cover the vessel with a glass disc. Allow to stand overnight or over a weekend. Siphon off the supernatant, and dissolve the precipitate of SrCO₃ is in 1000 ml of 4 mol 1^{-1} HNO₃. Wash the flask twice with 500 ml of water each time. Combine the washings and the dissolved precipitates. The volume of the solution is ca. 31. Add 10 mg of Fe³⁺ to the solution. Then follow the procedure as for seawater.

3. Results and discussion

Table 1 shows the separation of Sr from Ca by Ca(OH)₂ precipitation from alkaline solution. In $0.2 \,\mathrm{mol}\,\mathrm{l}^{-1}$ NaOH, >99% of Ca can be removed by one precipitation, with >95% of Sr remaining in the solution. The concentration of Ca in the solution does not significantly affect the separation of Sr from Ca in a solution containing ≤50 g of Ca (or a Ca concentration of $20 \,\mathrm{g}\,\mathrm{l}^{-1}$) or a Ca/Sr mole ratio of 160. Baratta and Knowles [17] investigated the separation of Sr and Ca by Sr(NO₃)₂ in a strong nitric acid medium using a radioactive tracer. Their results show that at 64-67% nitric acid, 95-100% of Sr was recovered, while 90-94% of Ca was removed. It can be seen that the separation efficiency of Sr from Ca by Ca(OH)₂ in this work is similar to that achieved by Sr(NO₃)₂ precipitation using fuming nitric acid. However, the operation of Ca(OH)₂ precipitation is

easier, cheaper and less risky compared with the use of fuming nitric acid, especially for samples with a high calcium content. For analysis of seawater with a low 90Sr concentration, normally as much as 451 need to be treated to achieve low detection limits. As the calcium content could be >18 g, as much as 21 of fuming nitric acid need to be added to separate Sr from Ca. Handling of such a large amount of fuming nitric acid is difficult and risky. When using Ca(OH)₂ precipitation, the operation is easier and safer. By double precipitation of Ca(OH)₂, >99.9% of Ca can be removed. For a sample containing 20 g of Ca <20 mg of Ca remains, which is much less than the Sr content of the samples (\sim 350 mg). In addition, many interfering nuclides, such as uranium, thorium, transuranic elements and rare earth elements will also precipitate with Ca(OH)₂ and are separated from Sr.

Table 2 shows the separation of Sr from Ba by BaCl₂ precipitation in HCl. Both BaCl₂ and SrCl₂ are soluble in water and dilute HCl, but not in concentrated HCl; their solubility varies with the concentration of HCl. In 9.5 mol l⁻¹ HCl, >97% of Ba can be removed by BaCl₂ precipitation, while \sim 94% of Sr remains in the solution. This separation efficiency is similar to that using BaCrO₄ precipitation (Table 2).

Addition of acetone can promote the precipitation of BaCl₂ at lower HCl concentration. The results (Table 3) show that in 10% acetone, 95% of the Ba can be precipitated at $7.5 \, \text{mol} \, l^{-1}$ HCl and $\sim 94\%$ Sr is recovered in the solution. Thus, a $7.5 \, \text{mol} \, l^{-1}$ HCl–10% acetone medium can also be used to separate Sr from Ba, and, in this condition, HCl is less volatile.

Barium-133 has been present in the environment due to atmospheric fallout from nuclear weapons testing in 1950s and 1960s, but it has decayed to insignificant levels now. The separation of Ba in the procedure is also used for the separation of radium isotopes (²²⁶Ra, ²²⁸Ra), because radium and barium have very similar chemical properties and ²²⁶Ra is a

Table 1 Separation of Sr from Ca by Ca(OH)₂ precipitation

No.	85Sr added	Ca added	85Sr (Bq)		Recovery of	Ca in supernatant	Ca decontamination (%)
((Bq)	(g)	Precipitation	Supernatant	Sr (%)	(g)	
1	1050	50.00	31.6	1058.4	97.0	0.18	99.5
2	1050	31.00	38.1	1037.7	96.4	0.14	99.5
3	1050	10.00	30.6	1029.6	97.1	0.07	99.3

Table 2 Separation of Sr from Ba by BaCl₂ and BaCrO₄ precipitation

[HCl] (mol l ⁻¹)	Tracers added (Bq)		Supernatant (Bq)a	Precipitate (Bq)) ^a	Recovery of Sr (%)	Decontamination of Ba (%)
	⁸⁵ Sr	¹³³ Ba	⁸⁵ Sr	¹³³ Ba	⁸⁵ Sr	¹³³ Ba		
8.5	1050	1510	1058.4 ± 15.9	918.8 ± 14.2	2.0 ± 3.4	604.2 ± 19.4	99.8 ± 0.3	40.0 ± 1.3
9.0	1050	1510	1036.4 ± 24.8	484.7 ± 18.4	2.1 ± 2.4	1025.9 ± 27.3	98.8 ± 0.3	67.9 ± 1.8
9.5	1050	1510	998.6 ± 18.7	43.8 ± 9.4	62.4 ± 5.9	1420.9 ± 21.5	94.1 ± 0.6	97.1 ± 1.4
10.0	1050	1510	719.3 ± 16.2	40.5 ± 7.2	331.2 ± 11.1	1467.7 ± 19.2	68.5 ± 1.5	97.3 ± 1.3
10.5	1050	1510	309.7 ± 12.8	28.6 ± 4.2	743.4 ± 18.4	1543.1 ± 28.2	29.5 ± 1.3	98.1 ± 2.7
11.0	1050	1510	221.5 ± 16.2	7.9 ± 4.8	846.3 ± 21.2	1499.2 ± 19.2	21.1 ± 1.1	99.5 ± 1.3
BaCrO ₄	1050	1510	1038.1 ± 17.6	15.3 ± 5.7	49.0 ± 7.8	1496.2 ± 18.1	95.3 ± 0.7	99.0 ± 0.4

^a Average and standard deviation of two determinations.

Table 3
Separation of Sr from Ba by BaCl₂ precipitation in HCl-10% acetone medium

$[HCl] \pmod{l^{-1}}$	Tracers added (Bq)		Supernata	nt (Bq) ^a	Precipita	ite (Bq) ^a	Recovery	Decontamination
	⁸⁵ Sr ¹³³ Ba		⁸⁵ Sr	¹³³ Ba	⁸⁵ Sr ¹³³ Ba		of Sr (%)	of Ba (%)
7.0	1050	1510	1045.8	496.8	4.2	1037.4	99.6	67.1
7.5	1050	1510	984.9	65.2	65.6	1439.0	93.8	95.7
8.0	1050	1510	823.2	27.2	224.7	1485.8	78.4	98.2
8.5	1050	1510	516.6	14.8	539.7	1531.1	49.2	99.0
9.0	1050	1510	205.8	8.2	851.6	1493.4	19.6	99.5

^a Average and standard deviation of two determinations.

major component of naturally occurring radionuclides and needs to be separated for the determination of radiostrontium at low levels. Table 4 shows the separation of Sr from Ra by Ba(Ra)Cl₂ precipitation. At 9.5 mol l⁻¹ HCl, ~97% Ra can be removed from the solution. If this precipitation procedure is repeated, the decontamination of Ra can be >99%. This result is similar to that using Ba(Ra)CrO₄ precipitation which is used in the traditional analytical procedure for radiostrontium determination [15]. Compared

with Ba(Ra)CrO₄ precipitation, the procedure using Ba(Ra)Cl₂ precipitation is easier and quicker, because the concentration of HCl is easily adjusted and no operation is needed to remove external elements such as Cr in the BaCrO₄ procedure.

Ba(Ra)SO₄ precipitation is very effective and specific for the separation of Ra and Ba from other elements, and has been widely used for the determination of Ra [18]. But it cannot be used to separate Ba and Ra from Sr and Ca due to the low solubility of

Table 4
Separation of Sr from Ra by Ba(Ra)Cl₂ and Ba(Ra)CrO₄ precipitation

²²⁶ Ra added (Bq)	²²⁶ Ra in precipi	tate (Bq) ^a	²²⁶ Ra in supernatant	Decontamination of Ra (%)		
	First	Second	(Bq) ^a	Once	Twice	
33.0	32.37 ± 1.25	0.85 ± 0.36	0.30 ± 0.39	98.1 ± 2.8	99.1 ± 1.2	
33.0	22.28 ± 1.62	9.48 ± 0.94	0.84 ± 0.42	67.5 ± 4.9	97.4 ± 1.3	
33.0	32.1 ± 0.69	1.3 ± 0.42	0.29 ± 0.32	97.3 ± 2.1	99.1 ± 1.0	
	33.0 33.0	First 33.0 32.37 ± 1.25 33.0 22.28 ± 1.62	First Second 33.0 32.37 ± 1.25 0.85 ± 0.36 33.0 22.28 ± 1.62 9.48 ± 0.94	First Second (Bq) ^a 33.0 32.37 \pm 1.25 0.85 \pm 0.36 0.30 \pm 0.39 33.0 22.28 \pm 1.62 9.48 \pm 0.94 0.84 \pm 0.42	First Second $(Bq)^a$ Once 33.0 32.37 ± 1.25 0.85 ± 0.36 0.30 ± 0.39 98.1 ± 2.8 33.0 22.28 ± 1.62 9.48 ± 0.94 0.84 ± 0.42 67.5 ± 4.9	

^a Average and standard deviation of two determinations.

Table 5													
Separation	of Y	from	Ba	and	Sr a	nd l	Ra	by	$BaSO_{4} \\$	+ SrSO ₄	or	Ba(Ra)SO ₄	precipitation

Tracer	Added	Supernatant	Precipitate	Recovery of Y (%)	Decontamination of Sr, Ba, Ra (%)
Y (mg)	11.10	10.95 ± 0.22		98.6 ± 2.0	
85Sr (Bq)	1050	8.7 ± 2.4	1042 ± 38		99.2 ± 0.2
¹³³ Ba (Bq)	1510	2.2 ± 1.8	1511 ± 21		99.9 ± 0.1
²²⁶ Ra (Bq)	33.0	0.14 ± 0.26	32.87 ± 0.47		99.6 ± 1.4

Table 6 Analysis of seawater and drinking water for 90 Sr by the developed procedure and the traditional procedure using fuming nitric acid and BaCrO₄ precipitation

Sample	Volume (l)	Location	New p	rocedure		Tradit	Traditional fuming HNO3 procedure			
			Recovery (%)		Concentration of	Recov	ery (%)	Concentration of 90Sr		
			Sr	Y	90 Sr (Bq m $^{-3}$)	Sr	Y	$(Bq m^{-3})$		
Seawater	45	Hesslø	78.9	86.5	2.297	41.2	73.2	2.419		
Seawater	45	Møen	80.0	92.9	11.727	78.5	89.5	12.174		
Drinking water	200	Hvidsten	85.5	82.8	0.0442	68.5		0.0692		
Drinking water	200	Fåretofte	79.2	86.8	0.0231	74.1		0.0398		
Drinking water	200	Robbedale	79.2	86.4	0.0616	61.9		0.0747		
Drinking water	200	Blykober	65.8	88.7	0.0329	69.4		0.0607		

the sulphates of Sr and Ca. However, 90 Sr is usually determined by measuring its short-lived daughter nuclide 90 Y, and Y₂(SO₄)₃ is water soluble. Thus, the precipitation of Ba(Ra)SO₄ can be used to remove Ba and Ra from Y if only 90 Y is to be determined. Meanwhile, the separation of ⁹⁰Y from its mother nuclide ⁹⁰Sr and other isotopes of strontium such as ⁸⁹Sr and ⁸⁵Sr tracer can be also carried out in this step. Table 5 shows the separation of Y from Ba, Ra and Sr by sulphate precipitation; >99.5% Ba and Ra, and >99% Sr can be removed by this method, while >98.5% Y remained in the solution. It can be seen that the decontamination of Ba and Ra by this method is more effective than by Ba(Ra)CrO₄ and Ba(Ra)Cl₂ precipitation. But for the determination of both 90Sr and ⁸⁹Sr, this method cannot be used because it cannot separate Ba and Ra from Sr. Therefore, it is recommended that the procedure of Ba(Ra)Cl₂ precipitation is used for the determination of both ⁹⁰Sr and ⁸⁹Sr, and the Ba(Ra)SO₄ procedure for the determination of ⁹⁰Sr only.

The new analytical procedure has been applied to analyses of seawater and drinking water samples in our laboratory. Table 6 compares the analytical results obtained by the new procedure and the traditional procedure using fuming nitric acid and BaCrO₄ precipitation. They are in good agreement, especially for seawater samples. The differences between the results of the two methods for some drinking water samples are probably attributed to the large counting uncertainties at these low levels. The detection limit of our β counter (anti-coincidence gas flow GM counter) is 5–10 mBq, or 0.02–0.05 Bq m⁻³ for 2001 samples. The analytical error at this level is >50%. The lower results of the drinking water samples obtained with the new procedure could also be due to better decontamination of interfering nuclides such as 226 Ra.

4. Conclusions

The separation of Sr from a large amount of Ca is successfully carried out by $Ca(OH)_2$ precipitation; the decontamination factor for Ca is $>10^3$ when using double precipitation. For the determination of radiostrontium, the procedure is easier, less risky and much cheaper than the traditional method using fuming nitric acid.

At $9.5 \,\mathrm{mol}\,\mathrm{l}^{-1}$ HCl or $7.5 \,\mathrm{mol}\,\mathrm{l}^{-1}$ HCl-10% acetone, Sr can be separated from Ba and Ra. The

separation efficiency is similar to that of the BaCrO₄ precipitation method, but the procedure is easier and quicker.

For the determination of ⁹⁰Sr, a more effective and specific separation of Ba and Ra can be achieved by Ba(Ra)SO₄ precipitation. This procedure can be used simultaneously for separation and further purification of ⁹⁰Y from radiostrontium.

The procedure of Ca(OH)₂ precipitation combined with Ba(Ra)SO₄ has been successfully applied for ⁹⁰Sr analysis of 451 seawater and 2001 drinking water samples.

References

- [1] H. Dahlgaard, J. Environ. Radioact. 25 (1994) 37.
- [2] A. Aarkrog, H. Dahlgaard, S.P. Nielsen, Sci. Total Environ. 238 (1999) 143.
- [3] V.N. Egorov, P.P. Povinec, G.G. Polikarpov, N.A. Stokozov, S.B. Gulin, L.G. Kulebakina, I. Osvath, J. Environ. Radioact. 43 (1999) 137.
- [4] E.P. Horwitez, M.T. Dietz, D.E. Fisher, Solvent Extraction Ion Exchange 8 (1990) 557.

- [5] M. Pimpl, J. Radioanal, Nucl. Chem. 194 (1995) 311.
- [6] C.W. Lee, K.H. Hong, M.H. Lee, Y.H. Cho, G.S. Choi, Y.W. Choi, S.H. Moon, J. Radioanal. Nucl. Chem. 243 (2000) 767
- [7] E.P. Horwitz, M.T. Dietz, D.E. Fisher, Anal. Chem. 63 (1991) 522.
- [8] F. Gouteland, R. Nazard, C. Bocquet, N. Coquenlorge, P. Letessier, D. Calmet, Appl. Radiat. Isotopes 53 (2000) 145
- [9] M. Heilgeist, J. Radioanal. Nucl. Chem. 245 (2000) 249.
- [10] F. Dobinson, Nature 183 (1959) 674.
- [11] N.A. Myers, Nature 183 (1959) 1807.
- [12] J. Cobb, P. Warwick, R.C. Carpenter, R.T. Morrison, Sci. Total Environ. 173/174 (1995) 179.
- [13] R. Stella, T.G. Valentini, L. Maggi, J. Radioanal. Nucl. Chem. 161 (1992) 413.
- [14] H.V. Weiss, W.H. Shipman, Anal. Chem. 29 (1957) 1764.
- [15] IAEA, Reference method for marine radioactivity studies, IAEA Technical Report Series No. 118, International Atomic Energy Agency, Vienna, 1970.
- [16] F. Patti, A. Hernandez, Anal. Chim. Acta 55 (1971) 325.
- [17] E.J. Baratta, F.E. Knowles Jr., Anal. Chem. 43 (1971) 1138.
- [18] M.D. Erickson, N.A. Chieco, HASL-300, The Procedure Manual of the Environmental Measurement Laboratory, US Department of Energy, http://www.eml.doe.gov/publications/, 1997.