VLOGA ZA (SO)FINANCIRANJE
RAZISKOVALNEGA PROJEKTA ZA LETO 2001

(RESEARCH PROPOSAL)

 

 

II.  VSEBINA PREDLAGANEGA RAZISKOVALNEGA PROJEKTA[1]

 

 

1.  Naslov raziskovalnega projekta (Title of Proposed Project):

 

Counter of Cherenkov photons with aerogel radiator

 

 

2.  Predlog projekta (Proposed Research)

 

2.1. Izhodišče raziskave in predstavitev problema
(Scientific Background of the Proposed Research):

 

Cherenkov radiation caused by fast charged particles in a transparent medium is the basis for different methods of particle identification. Up to the present, gaseous and solid (or liquid) radiators have been used as sources of Cherenkov radiation. The threshold for photon emission of pions is above 2.5 GeV/c in gases and below 0.2 GeV/c in solids (or liquids). The intermediate uncovered gap is essential for the investigation of rare B meson decays, which are the research subject of many experiments,  some in progress, others in preparation.

A solution to the problem is offered by silica aerogels, a porous material with refractive index between 1.005 and 1.06. The use of aerogels as Cherenkov radiators has been limited up to now mainly by its low transparency for light and the fact that aerogels are hygroscopic. New methods of sythesis and improved manufacturing procedures have made available aerogels with better

transparency and some are even hydrophobic. This allows the use of aerogel Cherenkov radiation in developing detection methods for identifying and separating different species of particles.

Aerogel has been used as a Cherenkov radiator in two experiments: the HERMES experiment at the DESY laboratory in Hamburg, Germany and the BELLE experiment at the KEK institute in Tsukuba, Japan. The results indicate that it would be meaningful to use such a radiator also in Cherenkov detectors with thin radiators without focusing systems of mirrors (so called proximity focusing RICH).The advantage of such detectors is their compactness, which is especially important for experiments at the high energy colliders. By making use of improved aerogels, recently developed multianode photomultiplier tubes and additional lens systems for elimination of the inefficiency due to the PMT inactive surface, we propose to develop a method for detection of Cherenkov photons.

The proposed project includes the construction of an apparatus for testing the performance of a Cherenkov detector with thin aerogel radiators, without mirror focusing. We shall investigate and test light collection systems, which are essential since the PMT active surface is smaller than their full geometrical surface.

A possible application of the Cherenkov photon detector could be for detection of beta particles. Of special interest is the detection of the radioactive isotope Sr-90 in the environment. The isotope Sr-90 is highly radiotoxic due to the fact that it is a bone seeking element like calcium and that its half-life is 28.5 years. In addition, the daughter isotope Y-90 emits beta electrons of relatively high end-point energy (Emax = 2.27MeV). Sr-90 is a fission product, thus it may pollute the environment following an accident in a nuclear power plant. In such a case it would be important to quickly and accurately measure its concentration in various samples. Sr-90 and Y-90 are pure beta emitters, such that they are not accessible to identification by standard methods of gamma ray spectrometry. Beta spectrometry, on the other hand, is made difficult by the fact that the spectrum is continuous with many overlapping contributions of other radionuclides in the sample. The usual procedure is a multistep chemical analysis, which is complex and time consuming.

Some time ago, a method has been proposed by researchers at the J. Stefan Institute, which is based on the fact that the Y-90 beta spectrum end-point energy is relatively high. A choice of aerogel with suitable refractive index allows one to select the threshold energy of beta electrons, which would radiate Cherenkov photons, e.g. the threshold energy for an aerogel with the refractive index n=1.06 is at 1 MeV. Thus one may separate the contributions of  different radioactive isotopes.

By modelling the physical processes produced by beta electrons and the gamma and cosmic ray backgrounds, we intend to optimize the detector parameters. Such a detector would allow quick measurements of low activities of the isotope Sr-90 in environmental samples.

 

2.2. Analiza in pregled relevantne literature (in rezultatov raziskav)
(Present State-of-the-Art  in the Proposed Field of Research):

 

The BELLE experiment is the first experiment in elementary particle physics to use aerogel as a radiator in the threshold Cherenkov counter, while Cherenkov rings were first observed in the HERMES experiment (references 1 and 2). The idea of using aerogels in proximity focusing RICH detectors was presented by T.Iijima (reference 3).

Our experiencies with multi-anode photomultipliers as single photon detectors (references 5-8)  and optical systems for light collection (reference 9) indicate the possibillity for a development of a photon detector suitable for proximity focusing RICH counters. Significant progress in manufacturing procedures of aerogel materials has a large impact on the proposed project (references 2 and 10-12). For studies of Cherenkov photon counters with aerogel radiator for measurements of beta activities in environmental samples, the past experiencies are of special importance. These were gained at our institute by testing aerogel based detectors with samples of pure beta emitters (reference 13).

Several authors have already studied the possibility of Sr-90/Y-90 concentration measurements in water solutions by using comercial liquid scintillators (references 14-17). Cherenkov radiation threshold and strong energy dependence of detection efficiency in water solutions could in principle be used for separation of radioactive isotopes and for the reduction of low energy beta and gamma background radiation (reference 18). However, since relatively large refractive index of water (n=1.33) corresponds to relatively low energy threshold of  0.263 MeV, most of the radionuclides in such detector would contribute to a measured signal. For this reason we estimate the proposed project to have significant benefits.

   

Reference:

 

1. T. Iijima et al., Nucl. Instr. and Meth. A453 (2000) 217-221.

2. E. Aschenauer et al., Nucl. Instr. and Meth. A440 (2000) 338-347.

3. T. Iijima, "Aerogel Cherenkov Counter in Imaging Mode", JPS Meeting, Tokio, September 1997.

4. I. Adam, "DIRC, the particle identification system for BABAR", SLAC-PUB-8590, Aug. 2000.

5. P. Križan et al., Nucl. Instr. and Meth. A394 (1997) 27-34.

6. S.Korpar et al., Nucl. Instr. and Meth. A442 (2000) 316-321. 

7. S.Korpar et al., Nucl. Instr. and Meth. A433 (1999) 128-135.

8. I.Arinyo et al., Nucl. Instr. And Meth. A453 (2000) 289-295.

9. D.R. Broemmelsiek, Nucl. Instr. and Meth. A433 (1999) 136-142.

10. R. De Leo et al., Nucl. Instr. and Meth. A457 (2001) 52-63.

11. A.R.Buzykaev et al., Nucl. Instr. and Meth. A433 (1999) 396-400.

12. T. Sumiyoshi et al., Nucl. Instr. and Meth. A433 (1999) 385-391.

13. D.Brajnik et al., Nucl. Instr. and Meth. in Phys. Res. A353 (1994) 217-221.

14. W.J. Gelsema et al., Int. J. Appl. Radiat. Isot. 26 (1975) 443.

15. J.E. Martin, Int. J. Appl. Radiat. Isot. 38 (1987) 953.

16. H.H. Ross, Anal. Chem. 41 (1969) 1260.

17. B. Carmon, Int. J. Appl. Radiat. Isot. 30 (1979) 97.

18.   K.Walter et al., Radio. Acta 62 (1993) 207-212.

 

 

2.3. Pomembnost pričakovanih raziskovalnih rezultatov (Scientific/Technological Relevance):

 

2.3.1. Pomen za razvoj znanosti (Relevance to Science Development):

 

Identification of charged elementary particles, in particular the separation  between kaons and pions, is essential in experimental studies of rare decays  of B and D mesons. By using silica aerogel as radiator medium in proximity focussing RICH counters it will be possible to further develop identification methods, which will be of prime importance for CP violation measurements in two body decays of B mesons.  

The project is important also for a further development of a method for radioactivity measurements of pure beta emitters by using Cherenkov radiation in aerogel. It is expected that by optimizing individual components of the system the efficiency for detection of beta electrons from the Sr-90 decay chain will be high enough to allow for quick and simple low concentration measurements of this highly radiotoxic isotope. 

 

2.3.2. Pomen za aplikacijo (Relevance to Application):

 

An apparatus for low level radioactivity  measurements of Sr-90, which could be designed as a result of the proposed project, could allow for easy handling and quick response in quality assessment of food.

 

2.3.3. Pomen za sofinancerje/uporabnike (Relevance to Beneficiaries):

 

     

 

2.3.4. Pomen za širjenje in izkoriščanje znanja (za aplikativne raziskave)
(Dissemination and Exploitation of Results):

 

     

 

 

2.4. Podroben opis programa raziskovalnega projekta
(Detailed Description of the Work Programme):

 

-setting up of a system with an aerogel based proximity focussing RICH counter by using the available equipment

-study of light collection systems for Cherenkov photons

-system test with cosmic rays

-upgrade of the system, on-the-bench and beam tests

-setting up of a system for low level radioactivity  measurements of Sr-90

-optimisation of the  low level radioactivity apparatus by modelling the relevant phyical       processes, testing

 

2.5. Časovna razporeditev (Timescale):

 

First year: setting up of a proximity  focussing RICH counter by using the available equipment.

Second year: upgrade of the counter, test beam and cosmic ray tests, setting up of a detection system for beta emitters.

Third year: finalize the  low level beta radioactivity apparatus.     

 

2.6. Raziskovalna oprema (Research Equipment):

 

2.6.1. Razpoložljiva raziskovalna oprema (nad 5000 ECU) potrebna za izvedbo projekta
(Available Research Equipment):

 

 Laboratory for particle detector development at the Experimental particle physics department of the J. Stefan Institute

 

·      NI measurements software LabView in PC computer Pentium III,  Windows98 operating system

·      radioactive beta  electron source  Sr-90 (Amersham), multiwire proportional chamber and plastic scintillators

·      multianode photomultipliers Hamamatsu, R5900-M16 in  R5900-M4

·      amplifier, shaper and discriminator ASD8

·      Gas system with the gases needed for MWPC operation

·      Measurement units CAMAC  and  NIM with :

·      CAEN 4CH HV Power Supply Mod. N470

·      Voltcraft LV Power Supply

·      CAEN CAENET Camac controller Mod. C117B

·      LeCroy 8901A GPIB interface

·      Ortec ADC Mod. AD811 in LeCroy ADC 2249A

·      LeCroy TDC 4291B

·      CAEN 16 CH Multiplexed DAC Mod. C221

·      CAEN 16 CH ECL scaler Mod. C257

·      CAEN Preset Counter and Gate Mod. C423

·      Philips 7106 16 Channel Discriminator Latch

·      CAEN Quad Scaler and Preset Counter Mod. N145

·      EG-G-ESN Octal CF discriminator CF800

·      Philips scientific Quad Linear Fan In-Out Mod.744

·      Philips scientific Quad Two Fold Logic Unit Mod. 752

·      Ortec Fast Amplifier FTA 820A

·      Philips scientific Dual Delay Module Mod.792

 

2.6.2. Manjkajoča raziskovalna oprema (nad 5000 ECU) potrebna za izvajanje projekta
(Required Research Equipment):

 

/    

 

 

3.  Mednarodno sodelovanje (International Cooperation)

 

3.1. Sodelovanje v mednarodnih projektih (Participation in International Projects):

 

/    

 

3.2. Druge oblike sodelovanja (Other Forms of Cooperation):

 

 /   

 

 

4.  Projektna skupina (Project Team)   (glej prilogi A in B)

 

4.1. Odgovorni nosilec (Principal Researcher)

 

4.1.1. Ime in priimek, akademski ter znanstveno-raziskovalni naziv odgovornega nosilca
(Name, Degree):

 

Dr. Rok Pestotnik, research assistant  holding a PhD      

 

4.1.2. Kratka biografija odgovornega nosilca
(CV  of the Principal Researcher):

 

Dr Rok Pestotnik was born in 1972 in Ljubljana. He won the first price on the federal physics competition in Decani, Serbia, in 1986. After finishing the primary school, high school and military service, he studied physics  at the University of Ljubljana, Faculty for mathematics and physics. He graduated in 1996 with the diploma thesis Multianode photomultiplier as position sensitive detector of Cherenkov photons. The thesis was awarded with the Preseren's award for students of the Faculty of mathematics and physics (1996). For his  PhD he studied  elementary particle and nuclear physics. He defended his PhD thesis  Identification of Pions, Kaons and Protons in the HERA-B spectrometer at the beginning of 2001. During his PhD studies he was employed at  the  University of Ljubljana, Faculty of mathematics and physics, as a research assistant. Since April 2001 he is employed at the Institut Jožef Stefan. Since 1999 he has a teaching assistent position at the University of Ljubljana, Faculty of mathematics and Physics. The fields of research of Dr Rok Pestotnik are experimetal elementary particle physics and the development of  detection methods for the elementary particle identification. As a member of the international collaboration he collaborates at the HERA-B experiment. The aim of the HERA-B experiment are studies of rare decays in physics of  D and B mesons. He collaborated in the development  of photon detectors and electronics for the Ring Imaging Cherenkov counter in the HERA-B experiment. During his PhD studies he spent more than a year at the institute DESY, Hamburg. In addition to the experience in experimental particle physics, he has a broad experiencies in modelling of physical processes and related software development.

 

4.2. Reference odgovornega nosilca in ostalih raziskovalcev projektne skupine
(Professional References of the Members of the Project Team)


- priložite izpise bibliografij iz COBISS-a oz. za medicino iz baze IBMI za obdobje od 1998 dalje

 

4.2.1. Navedite seznam člankov odgovornega nosilca v mednarodno priznanih publikacijah (samo  toliko, da se vidi izpolnjevanje pogoja)[2]
( List of Scientific Articles of Principal Researcher Published in Internationally Recognized Publications ):

 

See the attached bibliography. Note that Principal Researcher is younger than 35 and he defended his PhD thesis in 2001.

 

4.2.2. Navedite seznam člankov v mednarodno priznanih publikacijah za tretjino raziskovalcev v projektni skupini, ki izpolnjuje pogoje za odgovornega nosilca:
(samo  toliko, da se vidi izpolnjevanje pogoja)2
(List of Scientific Articles Published in Internationally  Recognized Publications of Qualified Researchers in the Team):

 

See the attached bibliography. Nota that both researchers are younger than 35 and they both defended their theses in 2001.

 

4.2.3. Navedite najbolj citiran članek odgovornega nosilca citiran v mednarodno priznanih publikacijah v zadnjih 10 letih, število citatov te publikacije  in vir informacije o citatih (CAS, ISI, SSCI, AHCI, itd.)

(The Most Frequently Cited Article of Principal Researcher in Internationally   Recognized  Publications in Last 10 Years, Number of Citations and Citation Source):

 

 S.Korpar et al., The HERA-B RICH, Nucl. Instr. Meth.A433 (1999) 128-135, 7 citations , source: ISI      

 

4.2.4. Navedite najbolj citiran članek za tisto tretjino raziskovalcev v projektni skupini, ki izpolnjuje z zakonom in pravilnikom določene pogoje za odgovornega nosilca – citiranih v mednarodno priznanih publikacijah v zadnjih 10 letih, število citatov te publikacije  in vir informacije o citatih (CAS, ISI, SSCI, AHCI, itd.)
(The Most Frequently Cited Article of Project Team  in Internationally   Recognized  Publications in Last 10 Years, Number of Citations and Citation Source):

 

Albrecht H. et al., Evidence for Lambda(c)(2593)(+) production, Phys. Lett. B 402 (1997) 207-212, 4 citations, source:ISI

 

 

 

 

 

4.3. Navedite mednarodne patente katerih avtor (soavtor) je odgovorni nosilec in tretjina raziskovalcev v projektni skupini, ki  izpolnjuje z zakonom in pravilnikom določene pogoje za odgovornega nosilca (International Patents of Project Team):

 

   / 

 

 

 

 

 

V

Ljubljani    

, dne

  23.4.2001  

 

                                                                                                Odgovorni nosilec: 

                                                                                                (Principal Researcher)

                                                                                                                  Rok Pestotnik  



[1] Dokument lahko v obliki obrazca za Word 6.0 uporabite za pripravo opisa vsebine projekta, lahko pa vam služi samo kot pregled točk, ki jih mora opis vsebine projekta vsebovati.

[2]18. člen Pravilnika o pogojih in metodologiji izbora in financiranja projektov temeljnega in aplikativnega raziskovanja: 18. člen

Znanstveno zmožnost raziskovalcev za izvedbo predlogov projektov temeljnega in aplikativnega raziskovanja se oceni z vidika:

- znanstvene utemeljenosti predloga projekta;

- raziskovalne usposobljenosti projektne skupine.

Projektna skupina izkazuje usposobljenost, če:

1.       odgovorni nosilec izpolnjuje z zakonom določene pogoje za odgovornega nosilca in:

-          ima vsaj en članek kot edini avtor, objavljen v mednarodno priznani publikaciji v zadnjih treh letih ali ustrezno število člankov v soavtorstvu,

-          je bil citiran v mednarodno priznanih publikacijah v zadnjih desetih letih,  ali

-          ima mednarodne patente.

Navedene zahteve ne veljajo za odgovorne nosilce projektov, ki so mlajši od 35 let in od zagovora njihovega doktorata niso potekla več kot tri leta.

2.      vsaj ena tretjina aktivnih raziskovalcev v projektni skupini izpolnjuje z zakonom in s tem pravilnikom določene pogoje za odgovornega nosilca,

3.       oprema raziskovalne skupine zagotavlja izvedbo projekta.

Znanstveno-raziskovalni sveti natančneje določijo pogoje iz tega člena.