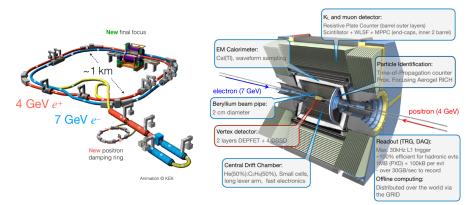
Operation and performance of the Belle II TOP counter

Marko Starič

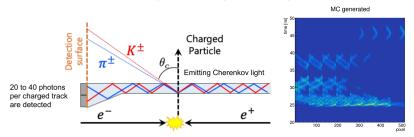


RICH 2025

Belle II experiment: 2nd generation "Super B Factory"

SuperKEKB accelerator

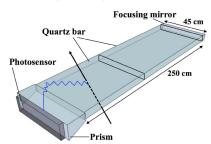
- upgraded KEKB
 - ightarrow nano-beam optics
- target luminosity: 30 × KEKB


Belle II detector

- general purpose spectrometer
- vertexing, tracking, neutrals detection, PID

Time-of-propagation counter

- TOP counter is the main hadron ID device in the barrel region
- Principle of operation
 - Cherenkov photons transported to photon sensors by means of total internal reflections in quartz bar (DIRC principle)
 - Two dimensional information about Cherenkov ring by measuring time-of-arrival and position of photons at photon sensors.



Belle II TOP: some design details

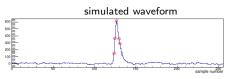
NIM A 1080 (2025) 170627

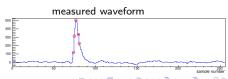
- 16 modules at $R=120~\mathrm{cm}$
- Quartz optics of a module
 - ullet 2.6 m long quartz plate, 2 cm imes 45 cm in cross-section
 - spherical mirror at forward side
 - · expansion prism at backward side



Belle II TOP: some design details

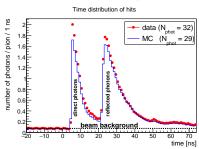
- Photon sensors
 - Hamamatsu MCP-PMT's
 - 4 × 4 channels, 5.5 mm pixel size
 - single photon sensitivity
 - excellent time resolution
 - works in magnetic field
 - 2 rows of 16 PMT's per module (512 pixels)
- Front-end electronics
 - waveform sampling with 2.7 Gs/sec
 - custom designed ASIC with 12 μs long analog ring buffer for storing waveforms
 → running continuously
 - 8 channels per ASIC
 - 16 ASIC's per boardstack (128 channels)
 - 4 boardstacks per module (512 channels)
 - digitization and feature extraction (50% CFD)
 - data sent-out by optical link

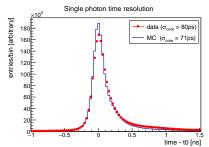

MC simulation


- MC simulation at Belle II based on Geant4
- Geometry of TOP
 - over 3000 physical volumes
 - 36 materials (10 are optically transparent)
- Quartz optics of each module composed of two box-shaped quartz segments, mirror segment and prism
 - all constructed with dimensions measured prior to installation
 - refractive index from specs of Corning HPFS 7980 (Sellmeier eq.)
 - glue joints, wavelength filter and silicone cookies also included
- Propagation of Cherenkov photons is done by Geant4
 - boundary process includes modeling of quartz surface roughness
- Each MCP-PMT is a separate volume consisting of body walls, an equivalent MCP material volume, an entrance window and a thin photo cathode as a sensitive volume
- Quantum and collection efficiencies modeled for each pixel separately
 - according to wavelength-dependent values measured during QA

Digitization

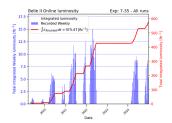
- List of simulated hits (position, time) fed into digitizer
 - converts position into pixel number
 - ullet generates transit-time spread and t0 jitter (6 mm bunch ightarrow 14 ps rms)
 - simulates waveform sampling
- For each hitted pixel waveform of 512 samples (~190 ns) constructed
 - for each simulated hit in the pixel
 - amplitude generated according to measured distribution for this pixel
 - signal pulse added to waveform (pulse shape from data)
 - electronic noise generated in each sample (r.m.s and BW from data)
- Feature extraction to determine digitized time (50% CF discr.)
 - multi-hit; pile-up and electronic time resolution inherently modeled





Beam background overlay

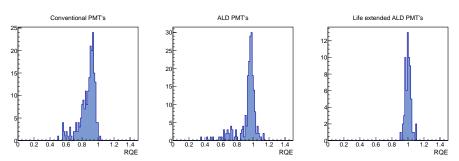
- Hits from measured beam background are finally appended to the list of digitized hits
 - beam background samples taken with delayed Bhabha trigger
- Reconstruction steps then follow (same as when processing data)
 - masking of dead/hot pixels
 - determination of bunch-crossing time to set time origin of hits
 - determination of particle likelihoods (NIM A 639 (2011) 252-255)



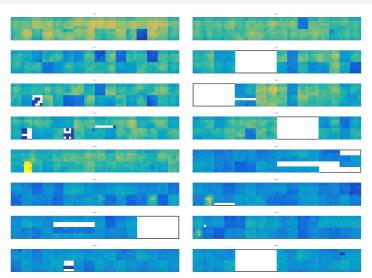
diff. in N_{phot} attributed to \sim 30% more δ -rays in data

Detector operation

- TOP modules installed in 2016
 - detector inaccessible until 2022
- Data taking started in 2019 (Run 1)
- Long shutdown in 2022-2023 (LS1)
- Data taking resumed in 2024 (Run 2)

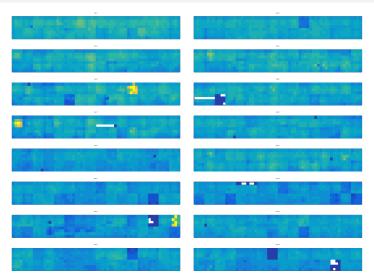

- Overall, the TOP detector has operated robustly, with few issues affecting its performance in Run 1
 - drop in quantum efficiency of conventional-type PMTs
 - ightarrow replaced during LS1 with life-extended ALD-type
 - electronic component failures (various reasons)
 - ightarrow faulty ones replaced during LS1
 - delamination of optical coupling of some PMT's due to magnetic force
 - \rightarrow special shim added to prevent PMT rotation

9/20

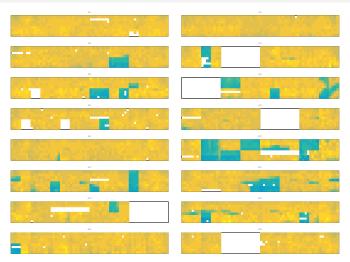

Drop in quantum efficiency

RQE = ratio of N_{phot} for di-muon events measured in April 2022 and Nov. 2020

Pixel hit distributions before LS1

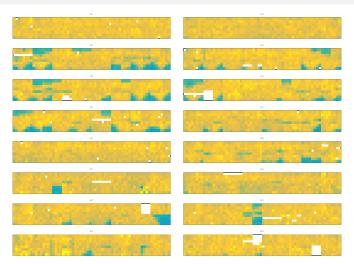


9.7% of faulty electronic channels at the end of Run 1


Pixel hit distributions after LS1

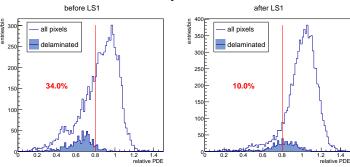
0.3% of faulty electronic channels at begin of Run 2

Delamination of optical couplings before LS1



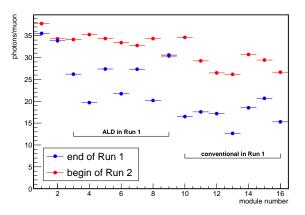
affected surface area: 8.9%

Determined from experimental data ightarrow see backup slide for the method


Delamination of optical couplings after LS1

affected surface area: 7.4% Special shim to prevent PMT rotation not working as expected

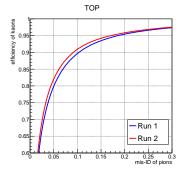
Photon detection efficiency relative to MC simulation

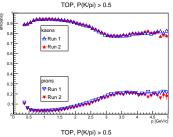


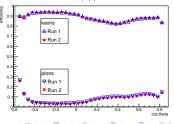
 $\rightarrow \sim 20\%$ photon loss on delaminated optical coupling

Number of photons

Average number of photons per muon $(e^+e^- o \mu^+\mu^-)$

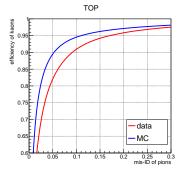

large improvement after PMT and faulty electronics replacements

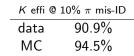

PID performance: Run 1 vs. Run 2

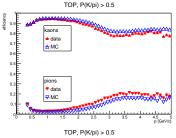

Measured with K and π from $D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$

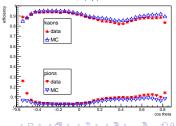
K effi @ $10\% \pi$ mis-ID Run 1 89.6% Run 2 90.9%

performance improvement in Run 2






PID performance: data vs. MC (Run 2)


Measured with K and π from $D^{*+} \to D^0 (\to K^- \pi^+) \pi^+$

discrepancy not fully understood yet

- The Belle II TOP has been operated robustly over past years.
- We observe faster-than-expected aging of conventional type PMT's.
- They have been replaced during LS1 with life-extended ALD ones, as well as some faulty electronic components.
- The detector performance has improved after the replacement.
- We still see a not-well-understood discrepancy in PID performance between data and MC. Investigation continues.

Other presentations (posters)

Performance evaluation in different environments of the MCP-PMT for the TOP counter in the Belle II experiment (R. Komori)

MANTRA: Measuring anti-neutron energy with the TOP counter of Belle II (S. De La Motte)

Backup slide: Measurement of pixel optical couplings

- With di-muon events (clean sample of muons)
- Using s-Plot technique to assign photon to PDF peak (or to background) giving access to photon impact angle α on PMT
- Make ratio of photon counts in $\alpha>30^0$ and $\alpha<30^0$ and then make double ratio (data/MC) to equalize the image
 - independent of photon detection efficiency
 - \bullet to enhance the effect, muons within $|z_{local}| < 50 \mathrm{~cm}$ are excluded