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Abstract

There is a growing demand for physicists in financial circles. Their knowledge of complex systems can signifi-
cantly contribute to understanding the market behaviour. Recent ideas of B. B. Mandelbrot connect fractals
to price movements. The proof of such speculation should be self-similarity of graphs showing trading activ-
ity. As we do not consider that to be the case at all times, we rather restrict our observations to points close
to crashes, which are correctly predicted by fractal structures. Self-similarity is the signature of systems
undergoing continuous phase-transitions. The comparison between two-dimensional Ising spin model and
market ordering is given. Based on similarities, we consider a crash really being a critical point in ordering.
This allows us to treat the graphs as self-similar with correlation length going to infinity and thereby fractal,
but only close to critical points. We can derive our basic laws solely from the requirements of self-similar
solutions in agreement with renormalization group equations. This gives us power-law behaviour, and by
letting the exponent being a complex number, we derive the log-periodic signature of data. Instead of the
formal proof, application on real data is given. We try to fit the function with unknown parameters on stock
indices in vicinity of the crash. As the fits perform reasonably well, we consider the theory to be correct.
After shock signatures resemble those exhibited before the crash. With them future process of stocks was

forecast and correct prediction in the case of Nikkei stock index was given. This makes the theory plausible.
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1 Introduction

Stock markets are places where fortunes are won and lost very easily, later being more usual. Fluctuations
in prices follow almost unrecognizable paths and many efforts were made to predict at least to some extent
the behaviour of future prices.

What is more, stock crashes often occur. By stock crashes we note sudden drops of stock prices. They can
be limited only to one trading company on the stock exchange or can affect the market as a whole. Many
people still recall the great American recession which followed the big stock crash in the early Thirties.
Almost all of the stock indexes showed significant drops of as much as 30 % to the trading price. Why this
big crashes occur, is still a mystery.

Now let us look at the theories most of the stock traders follow, also called portfolio theories. There are
two basic ideas, on which stock markets are modeled. One is the assumption, that future prices are totally
unpredictable. This is of course just an observation of the stock price variations, which are on the small scale
rather un-correlated. Secondly one assumes, that the variation of the prices is somehow bound. Or more
realistic, that the deviations of the price from some mean, smooth curve follow a normal, Gaussian or other
bell-shaped curve. On one hand this curve stretches to infinity and thereby allows big variations, but on the
other hand it gives them almost infinitesimal probability of occurrence. That means that stock crashes as
big as the Thirties crash should occur only every 10'? years!, but they are more frequent, they occur every
decade at least. Remember the Wall Street crash of 1987 or continuous drops of Asian markets throughout
this decade. Therefore this theories, usually refered to as portfolio theories, do not always confirm to real
facts.

Whereas for economists such crashes are reasons for headache, they provide interesting deviation from
serious science for many mathematicians as well as physicists. Such events are well detectable and they
possess many resemblances with problems and processes described in other fields of science. Thus some solu-
tions are readily available and they can, with some modifications, present serious alternative to established
theories.

Our seminar will follow ideas recently developed by D. Sornette and A. Johansen (ref. [3]-[8]). They
compare markets with systems close to critical point. The main feature of such systems is the self-similarity
of solutions, which follows directly as correlation lengths tend to infinity. So we can appreciate their work to
full extent, we should first reflect on fractals and their generation. Furthermore we will qualitatively inspect
the system of spins as to get the feel of the system being driven to critical point. Only at that point we will
use the simplified ideas of the renormalization group to state the model of log-periodic price oscillations.

Considering its agreement with real data we will conclude the paper.

1Probability of a 50 event according to normal distribution



2 Fractals and self-similarity

Fractals are functions, which are not aware of their scale. Their behaviour is the same, when we look at

the global form of the oceans, setting typical distances to well over thousands of kilometers, or observe a

single stone dipped into the water, where typical length stays well bellow one meter. With fractals we can

thus talk of scale-invariance and in that view we define self-similarity as faithful representation of the same

pattern on different scales. Nature itself offers many fractal structures. Most popular are already mentioned

form of the coast when viewed at different length scales and growing of the plants.

There is no obvious reason that fractal
structure governs market behaviour. But simi-
larity of charts with different time scales gives
us ground to introduce results of fractal geom-
etry to market indices. And with special gen-
erators one can simulate the very thing portfo-
lio theory does not give account for. The big
crashes. They can be quite frequent when mul-
tifractals, special brand of fractals, try to model
the market behaviour [2]. This is an interesting
example of physical ideas being put to practice
in economical field, not to mention its success

in comparison with basic portfolio theory.

3 Phase transition and crit-
ical point

Observing figure 1 we can see that the idea of
self-similarity handles the lively price fluctua-
tions quite well. So we can develop our ap-
proach even further. Self-similarity is one of
the basic characteristics of observable quanti-
ties in vicinity of the phase transition. We will
take a look at the phase transitions and physi-
cal systems undergoing it and then we will try
to find similarities in the progress of stock ex-
change. The next phase is to apply solutions of

the physical system to the market, which will
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Figure 1: Generation of fractals, spanning from big scale

and repeating itself on smaller and smaller scales. Ref. [2]



be done in a separate section.

For convenience reasons only we will examine the two-dimensional spin system. Most of the features
discussed can be found in other phase changing systems as well. We can picture the two valued spins
(up-down) sitting in a square lattice. We take the Ising model with Hamiltonian of the system defined as:

H=-J> SiS;—H> S 1)
(i,9) i

We defined sum indices (ij) as those of the nearest neighbours. Occupation probability is defined as the

exponential:
H
— 2
x| 0 )
so we can change Hamiltonian to:
H
H— T )

Let us first examine the case of no field present. Hamiltonian will be then of the form:
H=—"_ D SiS; (4)
kel G5

There exists a critical temperature T, below which the constant J becomes powerful enough to prevail
over thermal fluctuations. At that temperature and below it the system is strongly correlated, all spins point
in the same direction (if the case of J > 0 is examined, as we pretend it is). Above the critical temperature
spins point at very different directions.

When cooling the system from well above the critical temperature, at first we see the spins following the
thermal fluctuations and thus no order can be spotted. With approaching T the thermal energy kT is
lowered and order starts to emerge. At first only small portion of the lattice spins point in the same direction,
but with getting closer and closer to the critical temperature, the areas of equal sign of spin spread.

The common result of such cooling below T with no field present is the separation of the whole area
into “domains” of equally oriented spin. If we are to define correlation length £ as typical size of such a
“domain”, we could observe its temperature dependence £(T). Exact calculations of parameters are beyond
the scope of this seminar?, but we can expect this quantity to go to infinity at the T. This statement
goes well with the previous description of system going to T. With the correlation length close to infinity
system becomes self-similar in the sense mentioned with fractal structures. And this is the center result of
our observations of system going through phase transition.

Now we have to find grounds to insert this statement in the market behaviour. First we have to define
a system to go through a phase transition. We can quickly imagine a crowd of stock brokers on the floor,
shouting and phoning and hesitating and doing basically two things - buying or selling. So we actually have

a similarity with the spin system previously mentioned.

2We can calculate the temperature dependence of the order parameter in the mean field theory, ref. [1], for 2-D exact

solution was obtained by Onsager



Usually crashes end the periods of reasonably good market
behaviour with prices achiving their all-time highs just before
the crash. The stock actually becomes over-inflated with all
the stock-holders expecting the price to grow even further. A
growing stock is a popular one, so more and more people buy it,
by means of that the price increases and new investors follow.
This pre-crash process has a well recognizable pattern as we
will see. The consequence of such trading is the over-pricing

of the stock, forming a “bubble” of hope on which the price

A

rests, which at some point jumps to its original value, thereby
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producing a crash. The “critical” point occurs as the people igure 2: Cooling of the system e do

stop beliving that the price will increase further. If that belief mains of equally oriented spins grow, there-

with the correlation length. Picture taken

from [1].

is displayed by small amount (“domain”) of traders, the bubble
will not blow as still enough believers invest their money. But
as the domains grow, crash becomes more and more probable.
We can again define the correlation length as the diameter of the group of traders deciding in the same way.
And the actual phase transition will occur as the whole market will be absorbed in a single domain. That of
course does not happen, as smaller domains can blow the bubble and hence return the system to the state
far from critical point.
As the crash appears in time, one thinks of it as the equivalent of temperature in spin-models. So we can
set dimensionless measure of time as (compare (8)):
tc —t
T = =

(5)

tc being the critical moment. The other observable is of course the index, price, etc. It is actually the order

parameter of our system, our dependable observable. We introduce the measure of it as:
F(z) = Ic — I(), (6)

with I being the highest price (or index), thus setting F'(0) to zero in the ordered phase.

Hence we found a good agreement between a physical problem and market activity. There are of course
some modifications, i.e. with markets, correlation length varies with time and not with temperature, but
overall pictures coincide quite well. This gives us ground to approach the problem with the self-similarity

procedures, developed for phase transitions.

4 Renormalizability and self-similarity

As mentioned in the section above, the market close to crashes exhibits behaviour typical for the phase

transitions with correlation length growing beyond any scale. Hence the price graph is self-similar in vicinity



of the transitions. The rest we will leave to the theory of renormalization.
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Figure 3: Self-similarity? Comparison in graphs for the SP&P500 index of Wall Street stock exchange, on
1 year time-scale (left) with daily values and 10 days time-scale (right) with 15-minutes updates. Fractal

structure claims the two to be identical. We will let you be the judge of that.

Renormalization is technique of calculating the critical exponents of the system as approaching the critical
point. Let us go back to the physical system described above, namely the Ising model. We can imagine a
coarse-graining procedure which groups spins within a square with side £ into a new spin siting in the center
of the square. Reasonable restraints for £ are the dimension of the original lattice a on the lower end and

correlation length £ on the upper end:
aglLE (7)

We can see, that renormalization is really a transformation R,, which changes all the parameters of the
equation hence the state of the system itself. In the spin system, £ is the length of the lattice after the
coarse-graining.

The original N spins were replaced by N’ = N(a/f)?. Hence we reduced the number of spins. Moreover,
we changed the Hamiltonian as well. But we can still write it in the same form as before, only with changed
coefficients (J — J') due to scaling. As the correlation length measured in ¢ is smaller by an amount of a//¢
of the correlation length measured in the lattice units, we actually drove the Hamiltonian away from the
critical point. So the scale renormalization affects the effective temperature of the system (7"), meassured
in new units of length.

If we are to define:

we can always express ([1], p.250):

Reb =0 =007, 9)
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Figure 4: Coarse-grainnig of equally oriented spins within a domain. We replace spins in lattice with
dimension a with spins in lattice with dimension £. As the correlation length, measured in units of £ is
smaller than the one, measured in units of a, coarse-grained system is further from critical point as the

original one.

where y7 is the critical exponent for the temperature. As yr is essentially a constant, we can define:

b = — (10)
thereby producing a new parametrization of the renormalization transformation:

Re = R, (11)

We are suddenly not coarse-graining the spins but rather scaling the temperature. We merely want to state
that the effect of the both is actually the same.

Now we can select an arbitrary renormalization transformation to scale our market variables. Again we
use our Ising model considerations, and according to (11) we can set our temperature-equivalent to be the
renormalization transformation parameter. We select a convenient scaling of time axis with dimensionless
constant 7:

Row =2 (12)
T
There exists the transformation of the price F'(z) as well:

F (g) =R, F(z). (13)

By the function F’(x) we noted a new function of the scaled time. If we imagine scaling parameter 7 to be

smaller than 1, our transformation moves the solution F”(t) closer to critical point.



Now we introduce the scaling of the function F(z), by defining the transformation R, for it. To prevent
the function F'(z) going sky-high, we introduce a scaling constant u(7) and simply connect the original with

its transform at an arbitrary point y:

P (%)= ﬁF(x) (14)
F (%) =Fw) (15)

There is one condition that our renormalization transformation should satisfy. In words, two consecutive
transformations to scales 77, 75 should have the same effect as the combined transformation 7, x 75. This is

the consequence of R being a semi-group. Now let us look at he chain of two consecutive transformations:

(o) =™ () (16)

1 1
= F(z). 17
w ) o
And on the other hand we have transformation R, ,:
P (i> - rw (18)
T1T2 w(T172) '

By setting F'(z/mi7m2) = F"(x/1172) as the statement of semi-group, we get:

p(r1)p(r2) = p(ri72) (19)

With successive derivations with respect to 71 and 75 following relation is obtained:

Zi—i’; =a (20)
with a being an arbitrary constant. We can also imagine it being a complex number, hence F(z) being a
function in the complex plain. Our solution will be the real part of such function. We introduced a new
parameter to the model.

We can stop now for a while to observe our achievement so far. In our graph of trading activities we first
expanded the time-scale. This can be viewed in the sense of fractals as moving from one level to another.
If the structure of the price fluctuations is indeed a fractal one, the new graph should at least resemble the
old one. To get an exact copy we might have to shrink or expand the vertical axes. This is done with the
factor u. If the fractal structure is to be observed, our transformations should map the graph onto itself.

This is where we use to knowledge of our physical systems close to phase transitions. They all are self-
similar, bearing fractal structure in vicinity of the critical point. So there exists a critical point 7* for the
transformation R, where the transformation of the function remains the function itself:

F (Tﬁ) - R,.F(z) (21)

in the vicinity of the critical point.



Thus the solution will be of the form (dropping the star from 7 and using renormal;ization transformation

(14)):

T 1
F(2)=5F@) (22)
So the solution F(z) is extracted by inverting (22):
am (L
F(z) =1°F (;) (23)

Final solution should not be dependent of critical scale 7 which was artificially introduced, therefore the
following relation should be satisfied:

OF _

57 =0 (24)

Differentiating (23) one obtains:

a-1 zy_=2 dF
T [aF (T) oIk (25)
Setting it to zero as required by (24), replacing x/7 with y we get our final result:
d In F(y)
I/ 2
dlny “ (26)
Equation is simply solved, we get a power-law solution of the form:
te —t\*
I(t) = A1 + By ( ¢ ) (27)
tc

which diverges as t approaches t¢ if a is to be less than one. This usually is the case as we observe divergent
behaviour in vicinity of the critical point. We are not able to model the crash itself as it happens before the
actual phase transition, but we can definitely limit the time of its occurrence. The question remains though,
how far is it reasonable to try to fit the data with our approximation, as it is valid only close to the critical
point.

We can even improve our solution without any theoretical framework. So far no limitations were stated
to the nature of the critical exponent a. We can let it spread to imaginary axes®, hence producing a new

term in our solution. If « is to be written in the form « + iw, we get the imaginary term as:

exp(iwin [tct . t] ) (28)

The preceding constant can be imaginary as well, hence producing an arbitrary additive phase ¢ in the

argument of the exponent. Taking the real part of it, the new term is just:

C (tct; t) cos [wln (tcto_ t) + cp] (29)

3Some grounds are stated in section 4.1
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Figure 5: First success of log-periodicity. Fitting a log-periodic function to data prior to 1987 Wall Street
crash. Time distance is approx. 2 years, the best fit gives 47 = 327,B; = —79, t¢ = 87.65, a = 0.7,
x? = 107 for the pure power-law (eq. (27)) and Ay =412, B = —165,tc =87.74,C =12, w ="7.4,T = 2.0,
a = 0.33, x? = 36 for the log-periodic function (eq. (30)). The crash occured at 87.78. The + curve is the

representation of a constant 30 % annual income rate (exponential function, x? = 113). Ref. [3]

We can always set the arbitrary constant ¢ as a time scale by defining ¢ = wlnT, which gives us the

I(t) = Ay + B, (tCT_t)a (1+C’cos [wln (tCT_t)D (30)

We have four non-linear parameters and three linear. To fit the data we need a parameter of the type %2,

combined result as:

that is the measure of the fit. As the variance of the points is not a well-defined parameter with the prices

of stocks it is a natural alternative to take simple minimum squares function, given with:

X = e O (I~ 1(1)° (31)

i=1

So we can compare different models among themselves. The later model, gives its variance x? as much
as three times smaller as the pure power-law (27) or naive exponent function. Hence the implication of
imaginary exponents as the power-law solutions can be justified by the practice itself.

One of the most striking feature of our approximations is the correct account for the appearance of the
shortening waves in the prices as prices rise. This so called log-periodicity of the curve was observed with
other phenomena as well. The measurement of concentration of sulfur-oxide (SOy ) in mineral water close to
the epicenter of 1995 Kobe earthquake showed the same log-periodic signature. That was the confirmation

of application of similar theory to earthquakes. Thus we are dealing with a natural phenomena.

11



We can quantitatively observe the length of the waves and see it diminish as approaching the critical

point. Separation between maxima is namely connected with the logarithm. By setting periodicity condition:

t
wln Tn = 27n (32)

we can calculate the time of the n—th maximum:

t, = Te*™n (33)
The difference between consecutive maxima,
Aty =ty —th_1 (34)
follows a geometric series:
At,
— )\ — 27!'/0.1 35
AL e (35)

This is the most recognizable feature of log-periodicity and can be well observed.

4.1 Discrete versus continuous scale-invariance

The complex exponents are signatures of special kind of scale-invariance, called discrete scale-invariance.
Scale-invariance is a term used to denote self-similarity in view of scale-transformations. Discrete scale-
invariance is observed, when renormalization transformation maps onto itself only at some discrete values
of its parameter [9]. This is the approach we used with stock indices with introduction of 7*. On the other
hand, Ising model (in 2-D, as solved by Onsager) does not show log-periodic behaviour when approaching
critical point.

We can say, that log-periodic oscilations, as they are observed with price fluctuations, denote the existance
of a special time scale in approaching crash. Such scales can spontaneously appear in other complex systems
as well, one of them being the growth of cracks leading to earthquakes. Explanation of these events is rather
obscure [9], so it will not be given in the seminar. We will only extract, that such scales can arise and that
they can be explained. The Ising model, on the other hand, is to simple to bear such structures. But slight
complication, such as intoduction of special constant for next nearest neighbours, already breaks the unitary

symetry and log-periodic oscilations are to be observed (][9], p.14).

5 Discussion

There is much discussion going on whether stock markets can be modeled by physical systems. The mere
thought of comparing an investor possessing brains with a system of brainless spins, plausible as it might
be, is far from credible in financial circles. But there is some point in investigating these considerations even

further.

12



It is quite natural to assume physical system tending towards minimum energy*. We can easily picture
particles organizing themselves as to spend as much energy as possible even though they do not posses a
kind of a thinking device to guide them. We merely speculate them to feel the forces pushing them blindly
towards minimum of energy.

Let us continue with the comparison. We could without any problem design an energy functional de-
scribing stock exchange. We can set it to be the profit. Furthermore, we can almost extract humanity out
of the system by imaging brokers to be interested in money only. By that we implicitly assume all their
actions oriented towards one goal and one goal only. Namely increasing profit. Therefore they take only
those actions which increase the profit and avoid doing otherwise. Almost like the spins feeling the existence
of the field surrounding them.

We should leave some freedom as to allow small fluctuations in the market due to unwise decisions and
deficit of data available (like spins not feeling the external forces). Then again when big fluctuations occur,
crashes as we have called them, its’ magnitude provides enough information so we can presume the whole
market is aware of it. Hence every single trader is influenced by its raise and furthermore, he is bound to
take actions to increase his profit. We can well see the field forming and influencing the whole system of

particles in it.

6 Conclusion

In conclusions we will state some facts which support the theory, or rather, support its derivations. This
paper gives namely only basic ideas, whether complicated structures are to be found already resting on the
same mental approach. First we will give some proofs that the theory exhibits some confidence level. Finally
we will present its application to post-crash price evolution and its success.

Our considerations so far showed periods of ordering phases in otherwise disordered market. Getting to
this point we must mention that many unsuccessful fits were done in periods with no significant crashes,
therefore proving that crashes are consequences of cooperative behaviour. By unsuccessful we mean that
their variation disagreed with variation of the fit close to crash for several units. There is another point to
these crashes. As more and more fits were done with equation (30) similar values for parameters w and «
were obtained close to the crashes [7]. And the parameters for fits at other times on real data as well as
numerical generated data according to null-hypothesis scheme showed significant deviation from those values
[6], giving 95% confidence of log-periodicity for one event.

Let us reflect on the possible use of this revelations in day-to-day trading. And we might just give up.
The log-periodic patterns are hard to follow in the noisy markets of the present time. Coexistence of several

minima due to this noisy oscillations prevents us to recognize true minima of the log-oscillations. Moreover

4With different thermodynamical systems different functions are minimized, e.g. free enthalpy, entrophy,...But one is, and

we will call it simply the energy of the system
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the recognized pattern does not give us credibility to predict any crash let alone foretell the form and moment
of its appearance.

Our power-law solution is fortunately only the basic stone in development of the approach. By including
corrections of higher order in F'(t) one can derive complicated forms which take account for the behaviour
after the critical point as well. After-shock signatures are the most useful for the traders. With crash
occurring we have a fixed point to start our fit and extending it to future in agreement with intervals in fit
in pre-crash market. With this weapon the growth of Nikkei stock market index in the year 1999 up to 2000

was predicted [5] and confirmed [8].

10.8 7

Log(Nikkei)

90 92 94 96 98 100
Date

Figure 6: Correct prediction of the behaviour of Nikkei index. The fitted interval goes from the spike in
1990 and finishes in the year 1999. Nevertheless the assumption of rise in the price of the index is correct!
Note that the y-axis, the price, is in logarithmic scale. This prediciton gives log-periodicity credibility and

makes it one of the tools of the future.
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