| virtual | ~BrentRootFinder() |
| ROOT::Math::BrentRootFinder | BrentRootFinder() |
| ROOT::Math::BrentRootFinder | BrentRootFinder(const ROOT::Math::BrentRootFinder&) |
| virtual int | ROOT::Math::IRootFinderMethod::Iterate() |
| virtual int | ROOT::Math::IRootFinderMethod::Iterations() const |
| virtual const char* | Name() const |
| ROOT::Math::IRootFinderMethod& | ROOT::Math::IRootFinderMethod::operator=(const ROOT::Math::IRootFinderMethod&) |
| virtual double | Root() const |
| virtual int | SetFunction(const ROOT::Math::IGenFunction& f, double xlow, double xup) |
| virtual int | Solve(int maxIter = 100, double absTol = 1E-3, double relTol = 1E-6) |
| const ROOT::Math::IGenFunction* | fFunction | Pointer to the function. |
| double | fRoot | Current stimation of the function root. |
| double | fXMax | Upper bound of the search interval |
| double | fXMin | Lower bound of the search interval. |

Returns the X value corresponding to the function value fy for (xmin<x<xmax).
Method:
First, the grid search is used to bracket the maximum
with the step size = (xmax-xmin)/fNpx. This way, the step size
can be controlled via the SetNpx() function. If the function is
unimodal or if its extrema are far apart, setting the fNpx to
a small value speeds the algorithm up many times.
Then, Brent's method is applied on the bracketed interval.
\@param maxIter maximum number of iterations.
\@param absTol desired absolute error in the minimum position.
\@param absTol desired relative error in the minimum position.