virtual | ~BrentRootFinder() |
ROOT::Math::BrentRootFinder | BrentRootFinder() |
ROOT::Math::BrentRootFinder | BrentRootFinder(const ROOT::Math::BrentRootFinder&) |
virtual int | ROOT::Math::IRootFinderMethod::Iterate() |
virtual int | ROOT::Math::IRootFinderMethod::Iterations() const |
virtual const char* | Name() const |
ROOT::Math::IRootFinderMethod& | ROOT::Math::IRootFinderMethod::operator=(const ROOT::Math::IRootFinderMethod&) |
virtual double | Root() const |
virtual int | SetFunction(const ROOT::Math::IGenFunction& f, double xlow, double xup) |
virtual int | Solve(int maxIter = 100, double absTol = 1E-3, double relTol = 1E-6) |
const ROOT::Math::IGenFunction* | fFunction | Pointer to the function. |
double | fRoot | Current stimation of the function root. |
double | fXMax | Upper bound of the search interval |
double | fXMin | Lower bound of the search interval. |
Returns the X value corresponding to the function value fy for (xmin<x<xmax). Method: First, the grid search is used to bracket the maximum with the step size = (xmax-xmin)/fNpx. This way, the step size can be controlled via the SetNpx() function. If the function is unimodal or if its extrema are far apart, setting the fNpx to a small value speeds the algorithm up many times. Then, Brent's method is applied on the bracketed interval. \@param maxIter maximum number of iterations. \@param absTol desired absolute error in the minimum position. \@param absTol desired relative error in the minimum position.