virtual | ~GaussLegendreIntegrator() |
virtual double | Error() const |
ROOT::Math::GaussLegendreIntegrator | GaussLegendreIntegrator(const ROOT::Math::GaussLegendreIntegrator&) |
ROOT::Math::GaussLegendreIntegrator | GaussLegendreIntegrator(int num = 10, double eps = 1e-12) |
void | GetWeightVectors(double* x, double* w) |
virtual double | Integral() |
virtual double | Integral(const vector<double>& pts) |
virtual double | Integral(double a, double b) |
virtual double | IntegralCauchy(double a, double b, double c) |
virtual double | IntegralLow(double b) |
virtual double | IntegralUp(double a) |
ROOT::Math::VirtualIntegratorOneDim& | ROOT::Math::VirtualIntegratorOneDim::operator=(const ROOT::Math::VirtualIntegratorOneDim&) |
virtual double | Result() const |
virtual void | SetAbsTolerance(double) |
virtual void | SetFunction(const ROOT::Math::IGenFunction&, bool copy = false) |
void | SetNumberPoints(int num) |
virtual void | SetRelTolerance(double) |
virtual int | Status() const |
void | CalcGaussLegendreSamplingPoints() |
double | fEpsilon | Desired relative error. |
const ROOT::Math::IGenFunction* | fFunction | Pointer to function used. |
bool | fFunctionCopied | Bool value to check if the function was copied when set. |
double | fLastError | Error from the last stimation. |
double | fLastResult | Result from the last stimation. |
int | fNum | Number of points used in the stimation of the integral. |
bool | fUsedOnce | Bool value to check if the function was at least called once. |
double* | fW | Weights of the points used. |
double* | fX | Abscisa of the points used. |
Basic contructor of GaussLegendreIntegrator. \@param num Number of desired points to calculate the integration. \@param eps Desired relative error.
Returns the arrays x and w containing the abscissa and weight of the Gauss-Legendre n-point quadrature formula. Gauss-Legendre: W(x)=1 -1<x<1 (j+1)P_{j+1} = (2j+1)xP_j-jP_{j-1}
Implementing VirtualIntegrator Interface Set the desired relative Error.
Implementing VirtualIntegratorOneDim Interface Gauss-Legendre integral, see CalcGaussLegendreSamplingPoints.
Set integration function (flag control if function must be copied inside). \@param f Function to be used in the calculations. \@param copy Indicates whether the function has to be copied.
Middle functions Type: unsafe but fast interface filling the arrays x and w (static method) Given the number of sampling points this routine fills the arrays x and w of length num, containing the abscissa and weight of the Gauss-Legendre n-point quadrature formula. Gauss-Legendre: W(x)=1 -1<x<1 (j+1)P_{j+1} = (2j+1)xP_j-jP_{j-1} num is the number of sampling points (>0) x and w are arrays of size num eps is the relative precision If num<=0 or eps<=0 no action is done. Reference: Numerical Recipes in C, Second Edition