Documentation for the abstract class IBaseParam. It defines the interface for dealing with the function parameters This is used only for internal convinience, to avoid redefining the Parameter API for the one and the multi-dim functions. Concrete class should derive from ROOT::Math::IParamFunction and not from this class. @ingroup ParamFunc
~IParametricFunctionOneDim() | |
virtual ROOT::Math::IBaseFunctionOneDim* | ROOT::Math::IBaseFunctionOneDim::Clone() const |
virtual unsigned int | ROOT::Math::IBaseParam::NPar() const |
double | operator()(double x, const double* p) const |
double | operator()(const double* x, const double* p) |
ROOT::Math::IParametricFunctionOneDim& | operator=(const ROOT::Math::IParametricFunctionOneDim&) |
virtual string | ROOT::Math::IBaseParam::ParameterName(unsigned int i) const |
virtual const double* | ROOT::Math::IBaseParam::Parameters() const |
virtual void | ROOT::Math::IBaseParam::SetParameters(const double* p) |
Evaluate function at a point x and for given parameters p. This method does not change the internal status of the function (internal parameter values). If for some reason one prefers caching the parameter values, SetParameters(p) and then operator()(x) should be called. Use the pure virtual function DoEvalPar to implement it
Implement the ROOT::Math::IBaseFunctionMultiDim interface DoEval(x) using the cached parameter values
Evaluate function at a point x and for given parameters p. This method does not change the internal status of the function (internal parameter values). If for some reason one prefers caching the parameter values, SetParameters(p) and then operator()(x) should be called. Use the pure virtual function DoEvalPar to implement it