THIS CLASS CONTAINS ADVANCED SPECTRA PROCESSING FUNCTIONS. ONE-DIMENSIONAL BACKGROUND ESTIMATION FUNCTIONS ONE-DIMENSIONAL SMOOTHING FUNCTIONS ONE-DIMENSIONAL DECONVOLUTION FUNCTIONS ONE-DIMENSIONAL PEAK SEARCH FUNCTIONS These functions were written by: Miroslav Morhac Institute of Physics Slovak Academy of Sciences Dubravska cesta 9, 842 28 BRATISLAVA SLOVAKIA email:fyzimiro@savba.sk, fax:+421 7 54772479 The original code in C has been repackaged as a C++ class by R.Brun The algorithms in this class have been published in the following references: [1] M.Morhac et al.: Background elimination methods for multidimensional coincidence gamma-ray spectra. Nuclear Instruments and Methods in Physics Research A 401 (1997) 113- 132. [2] M.Morhac et al.: Efficient one- and two-dimensional Gold deconvolution and its application to gamma-ray spectra decomposition. Nuclear Instruments and Methods in Physics Research A 401 (1997) 385-408. [3] M.Morhac et al.: Identification of peaks in multidimensional coincidence gamma-ray spectra. Nuclear Instruments and Methods in Research Physics A 443(2000), 108-125. These NIM papers are also available as doc or ps files from:Spectrum.doc
TSpectrum() | |
TSpectrum(Int_t maxpositions, Float_t resolution = 1) | |
virtual | ~TSpectrum() |
void | TObject::AbstractMethod(const char* method) const |
virtual void | TObject::AppendPad(Option_t* option = "") |
virtual TH1* | Background(const TH1* hist, Int_t niter = 20, Option_t* option = "") |
const char* | Background(float* spectrum, Int_t ssize, Int_t numberIterations, Int_t direction, Int_t filterOrder, bool smoothing, Int_t smoothWindow, bool compton) |
virtual void | TObject::Browse(TBrowser* b) |
static TClass* | Class() |
virtual const char* | TObject::ClassName() const |
virtual void | TNamed::Clear(Option_t* option = "") |
virtual TObject* | TNamed::Clone(const char* newname = "") const |
virtual Int_t | TNamed::Compare(const TObject* obj) const |
virtual void | TNamed::Copy(TObject& named) const |
const char* | Deconvolution(float* source, const float* response, Int_t ssize, Int_t numberIterations, Int_t numberRepetitions, Double_t boost) |
const char* | DeconvolutionRL(float* source, const float* response, Int_t ssize, Int_t numberIterations, Int_t numberRepetitions, Double_t boost) |
virtual void | TObject::Delete(Option_t* option = "")MENU |
virtual Int_t | TObject::DistancetoPrimitive(Int_t px, Int_t py) |
virtual void | TObject::Draw(Option_t* option = "") |
virtual void | TObject::DrawClass() constMENU |
virtual TObject* | TObject::DrawClone(Option_t* option = "") constMENU |
virtual void | TObject::Dump() constMENU |
virtual void | TObject::Error(const char* method, const char* msgfmt) const |
virtual void | TObject::Execute(const char* method, const char* params, Int_t* error = 0) |
virtual void | TObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0) |
virtual void | TObject::ExecuteEvent(Int_t event, Int_t px, Int_t py) |
virtual void | TObject::Fatal(const char* method, const char* msgfmt) const |
virtual void | TNamed::FillBuffer(char*& buffer) |
virtual TObject* | TObject::FindObject(const char* name) const |
virtual TObject* | TObject::FindObject(const TObject* obj) const |
virtual Option_t* | TObject::GetDrawOption() const |
static Long_t | TObject::GetDtorOnly() |
TH1* | GetHistogram() const |
virtual const char* | TObject::GetIconName() const |
virtual const char* | TNamed::GetName() const |
Int_t | GetNPeaks() const |
virtual char* | TObject::GetObjectInfo(Int_t px, Int_t py) const |
static Bool_t | TObject::GetObjectStat() |
virtual Option_t* | TObject::GetOption() const |
Float_t* | GetPositionX() const |
Float_t* | GetPositionY() const |
virtual const char* | TNamed::GetTitle() const |
virtual UInt_t | TObject::GetUniqueID() const |
virtual Bool_t | TObject::HandleTimer(TTimer* timer) |
virtual ULong_t | TNamed::Hash() const |
virtual void | TObject::Info(const char* method, const char* msgfmt) const |
virtual Bool_t | TObject::InheritsFrom(const char* classname) const |
virtual Bool_t | TObject::InheritsFrom(const TClass* cl) const |
virtual void | TObject::Inspect() constMENU |
void | TObject::InvertBit(UInt_t f) |
virtual TClass* | IsA() const |
virtual Bool_t | TObject::IsEqual(const TObject* obj) const |
virtual Bool_t | TObject::IsFolder() const |
Bool_t | TObject::IsOnHeap() const |
virtual Bool_t | TNamed::IsSortable() const |
Bool_t | TObject::IsZombie() const |
virtual void | TNamed::ls(Option_t* option = "") const |
void | TObject::MayNotUse(const char* method) const |
virtual Bool_t | TObject::Notify() |
static void | TObject::operator delete(void* ptr) |
static void | TObject::operator delete(void* ptr, void* vp) |
static void | TObject::operator delete[](void* ptr) |
static void | TObject::operator delete[](void* ptr, void* vp) |
void* | TObject::operator new(size_t sz) |
void* | TObject::operator new(size_t sz, void* vp) |
void* | TObject::operator new[](size_t sz) |
void* | TObject::operator new[](size_t sz, void* vp) |
virtual void | TObject::Paint(Option_t* option = "") |
virtual void | TObject::Pop() |
virtual void | Print(Option_t* option = "") const |
virtual Int_t | TObject::Read(const char* name) |
virtual void | TObject::RecursiveRemove(TObject* obj) |
void | TObject::ResetBit(UInt_t f) |
virtual void | TObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU |
virtual void | TObject::SavePrimitive(basic_ostream<char,char_traits<char> >& out, Option_t* option = "") |
virtual Int_t | Search(const TH1* hist, Double_t sigma = 2, Option_t* option = "", Double_t threshold = 0.05) |
Int_t | Search1HighRes(float* source, float* destVector, Int_t ssize, float sigma, Double_t threshold, bool backgroundRemove, Int_t deconIterations, bool markov, Int_t averWindow) |
Int_t | SearchHighRes(float* source, float* destVector, Int_t ssize, float sigma, Double_t threshold, bool backgroundRemove, Int_t deconIterations, bool markov, Int_t averWindow) |
static void | SetAverageWindow(Int_t w = 3) |
void | TObject::SetBit(UInt_t f) |
void | TObject::SetBit(UInt_t f, Bool_t set) |
static void | SetDeconIterations(Int_t n = 3) |
virtual void | TObject::SetDrawOption(Option_t* option = "")MENU |
static void | TObject::SetDtorOnly(void* obj) |
virtual void | TNamed::SetName(const char* name)MENU |
virtual void | TNamed::SetNameTitle(const char* name, const char* title) |
static void | TObject::SetObjectStat(Bool_t stat) |
void | SetResolution(Float_t resolution = 1) |
virtual void | TNamed::SetTitle(const char* title = "")MENU |
virtual void | TObject::SetUniqueID(UInt_t uid) |
virtual void | ShowMembers(TMemberInspector& insp, char* parent) |
virtual Int_t | TNamed::Sizeof() const |
const char* | SmoothMarkov(float* source, Int_t ssize, Int_t averWindow) |
static TH1* | StaticBackground(const TH1* hist, Int_t niter = 20, Option_t* option = "") |
static Int_t | StaticSearch(const TH1* hist, Double_t sigma = 2, Option_t* option = "goff", Double_t threshold = 0.05) |
virtual void | Streamer(TBuffer& b) |
void | StreamerNVirtual(TBuffer& b) |
virtual void | TObject::SysError(const char* method, const char* msgfmt) const |
Bool_t | TObject::TestBit(UInt_t f) const |
Int_t | TObject::TestBits(UInt_t f) const |
const char* | Unfolding(float* source, const float** respMatrix, Int_t ssizex, Int_t ssizey, Int_t numberIterations, Int_t numberRepetitions, Double_t boost) |
virtual void | TObject::UseCurrentStyle() |
virtual void | TObject::Warning(const char* method, const char* msgfmt) const |
virtual Int_t | TObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) |
virtual Int_t | TObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const |
virtual void | TObject::DoError(int level, const char* location, const char* fmt, va_list va) const |
void | TObject::MakeZombie() |
enum { | kBackOrder2 | |
kBackOrder4 | ||
kBackOrder6 | ||
kBackOrder8 | ||
kBackIncreasingWindow | ||
kBackDecreasingWindow | ||
kBackSmoothing3 | ||
kBackSmoothing5 | ||
kBackSmoothing7 | ||
kBackSmoothing9 | ||
kBackSmoothing11 | ||
kBackSmoothing13 | ||
kBackSmoothing15 | ||
}; | ||
enum TObject::EStatusBits { | kCanDelete | |
kMustCleanup | ||
kObjInCanvas | ||
kIsReferenced | ||
kHasUUID | ||
kCannotPick | ||
kNoContextMenu | ||
kInvalidObject | ||
}; | ||
enum TObject::[unnamed] { | kIsOnHeap | |
kNotDeleted | ||
kZombie | ||
kBitMask | ||
kSingleKey | ||
kOverwrite | ||
kWriteDelete | ||
}; |
TH1* | fHistogram | resulting histogram |
Int_t | fMaxPeaks | Maximum number of peaks to be found |
Int_t | fNPeaks | number of peaks found |
TString | TNamed::fName | object identifier |
Float_t* | fPosition | [fNPeaks] array of current peak positions |
Float_t* | fPositionX | [fNPeaks] X position of peaks |
Float_t* | fPositionY | [fNPeaks] Y position of peaks |
Float_t | fResolution | resolution of the neighboring peaks |
TString | TNamed::fTitle | object title |
static Int_t | fgAverageWindow | Average window of searched peaks |
static Int_t | fgIterations | Maximum number of decon iterations (default=3) |
maxpositions: maximum number of peaks resolution: determines resolution of the neighboring peaks default value is 1 correspond to 3 sigma distance between peaks. Higher values allow higher resolution (smaller distance between peaks. May be set later through SetResolution.
static function: Set average window of searched peaks see TSpectrum::SearchHighRes
static function: Set max number of decon iterations in deconvolution operation see TSpectrum::SearchHighRes
ONE-DIMENSIONAL BACKGROUND ESTIMATION FUNCTION This function calculates the background spectrum in the input histogram h. The background is returned as a histogram. Function parameters: -h: input 1-d histogram -numberIterations, (default value = 20) Increasing numberIterations make the result smoother and lower. -option: may contain one of the following options - to set the direction parameter "BackIncreasingWindow". By default the direction is BackDecreasingWindow - filterOrder-order of clipping filter, (default "BackOrder2" -possible values= "BackOrder4" "BackOrder6" "BackOrder8" - "nosmoothing"- if selected, the background is not smoothed By default the background is smoothed. - smoothWindow-width of smoothing window, (default is "BackSmoothing3") -possible values= "BackSmoothing5" "BackSmoothing7" "BackSmoothing9" "BackSmoothing11" "BackSmoothing13" "BackSmoothing15" - "Compton" if selected the estimation of Compton edge will be included. - "same" : if this option is specified, the resulting background histogram is superimposed on the picture in the current pad. NOTE that the background is only evaluated in the current range of h. ie, if h has a bin range (set via h->GetXaxis()->SetRange(binmin,binmax), the returned histogram will be created with the same number of bins as the input histogram h, but only bins from binmin to binmax will be filled with the estimated background.
ONE-DIMENSIONAL PEAK SEARCH FUNCTION This function searches for peaks in source spectrum in hin The number of found peaks and their positions are written into the members fNpeaks and fPositionX. The search is performed in the current histogram range. Function parameters: hin: pointer to the histogram of source spectrum sigma: sigma of searched peaks, for details we refer to manual threshold: (default=0.05) peaks with amplitude less than threshold*highest_peak are discarded. 0<threshold<1 By default, the background is removed before deconvolution. Specify the option "nobackground" to not remove the background. // By default the "Markov" chain algorithm is used. Specify the option "noMarkov" to disable this algorithm Note that by default the source spectrum is replaced by a new spectrum// By default a polymarker object is created and added to the list of functions of the histogram. The histogram is drawn with the specified option and the polymarker object drawn on top of the histogram. The polymarker coordinates correspond to the npeaks peaks found in the histogram. A pointer to the polymarker object can be retrieved later via: TList *functions = hin->GetListOfFunctions(); TPolyMarker *pm = (TPolyMarker*)functions->FindObject("TPolyMarker") Specify the option "goff" to disable the storage and drawing of the polymarker.
resolution: determines resolution of the neighboring peaks default value is 1 correspond to 3 sigma distance between peaks. Higher values allow higher resolution (smaller distance between peaks. May be set later through SetResolution.
ONE-DIMENSIONAL BACKGROUND ESTIMATION FUNCTION - GENERAL FUNCTION This function calculates background spectrum from source spectrum. The result is placed in the vector pointed by spe1945ctrum pointer. Function parameters: spectrum-pointer to the vector of source spectrum ssize-length of the spectrum vector numberIterations-maximal width of clipping window, direction- direction of change of clipping window - possible values=kBackIncreasingWindow kBackDecreasingWindow filterOrder-order of clipping filter, -possible values=kBackOrder2 kBackOrder4 kBackOrder6 kBackOrder8 smoothing- logical variable whether the smoothing operation in the estimation of background will be included - possible values=kFALSE kTRUE smoothWindow-width of smoothing window, -possible values=kBackSmoothing3 kBackSmoothing5 kBackSmoothing7 kBackSmoothing9 kBackSmoothing11 kBackSmoothing13 kBackSmoothing15 compton- logical variable whether the estimation of Compton edge will be included - possible values=kFALSE kTRUE
Background estimation
Goal: Separation of useful information (peaks) from useless information (background)
method is based on Sensitive Nonlinear Iterative Peak (SNIP) clipping algorithm
new value in the channel i is calculated
where p = 1, 2, , numberIterations. In fact it represents second order difference filter (-1,2,-1).
Function:
const char* Background(float *spectrum, int ssize, int numberIterations, int direction, int filterOrder, bool smoothing, int smoothingWindow, bool compton)
This function calculates background spectrum from the source spectrum. The result is placed in the vector pointed by spectrum pointer. One can also change the direction of the change of the clipping window, the order of the clipping filter, to include smoothing, to set width of smoothing window and to include the estimation of Compton edges. On successful completion it returns 0. On error it returns pointer to the string describing error.
Parameters:
spectrum-pointer to the vector of source spectrum
ssize-length of the spectrum vector
numberIterations-maximal width of clipping window,
direction- direction of change of clipping window
- possible values=kBackIncreasingWindow
kBackDecreasingWindow
filterOrder-order of clipping filter,
-possible values=kBackOrder2
kBackOrder4
kBackOrder6
kBackOrder8
smoothing- logical variable whether the smoothing operation in the estimation of
background will be included
- possible values=kFALSE
kTRUE
smoothWindow-width of smoothing window,
-possible values=kBackSmoothing3
kBackSmoothing5
kBackSmoothing7
kBackSmoothing9
kBackSmoothing11
kBackSmoothing13
kBackSmoothing15
compton- logical variable whether the estimation of Compton edge will be included
- possible values=kFALSE
kTRUE
References:
[1] C. G Ryan et al.: SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. NIM, B34 (1988), 396-402.
[2] M. Morháč, J. Kliman, V. Matouek, M. Veselskŭ, I. Turzo.: Background elimination methods for multidimensional gamma-ray spectra. NIM, A401 (1997) 113-132.
[3] D. D. Burgess, R. J. Tervo: Background estimation for gamma-ray spectroscopy. NIM 214 (1983), 431-434.
Example 1 script Background_incr.c :
Figure 1 Example of the estimation of background for number of iterations=6. Original spectrum is shown in black color, estimated background in red color.
Script:
// Example to illustrate the background estimator (class TSpectrum).
// To execute this example, do
// root > .x Background_incr.C
#include <TSpectrum>
void Background_incr() {
Int_t i;
Double_t nbins = 256;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
TH1F *back = new TH1F("back","",nbins,xmin,xmax);
TH1F *d = new TH1F("d","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
back=(TH1F*) f->Get("back1;1");
TCanvas *Background = gROOT->GetListOfCanvases()->FindObject("Background");
if (!Background) Background = new TCanvas("Background","Estimation of background with increasing window",10,10,1000,700);
back->Draw("L");
TSpectrum *s = new TSpectrum();
for (i = 0; i < nbins; i++) source[i]=back->GetBinContent(i + 1);
s->Background(source,nbins,6,kBackIncreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d->SetBinContent(i + 1,source[i]);
d->SetLineColor(kRed);
d->Draw("SAME L");
}
Example 2 script Background_decr.c :
In Figure 1. one can notice that at the edges of the peaks the estimated background goes under the peaks. An alternative approach is to decrease the clipping window from a given value numberIterations to the value of one, which is presented in this example.
Figure 2 Example of the estimation of background for numberIterations=6 using decreasing clipping window algorithm. Original spectrum is shown in black color, estimated background in red color.
Script:
// Example to illustrate the background estimator (class TSpectrum).
// To execute this example, do
// root > .x Background_decr.C
#include <TSpectrum>
void Background_decr() {
Int_t i;
Double_t nbins = 256;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
TH1F *back = new TH1F("back","",nbins,xmin,xmax);
TH1F *d = new TH1F("d","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
back=(TH1F*) f->Get("back1;1");
TCanvas *Background = gROOT->GetListOfCanvases()->FindObject("Background");
if (!Background) Background = new TCanvas("Background","Estimation of background with decreasing window",10,10,1000,700);
back->Draw("L");
TSpectrum *s = new TSpectrum();
for (i = 0; i < nbins; i++) source[i]=back->GetBinContent(i + 1);
s->Background(source,nbins,6,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d->SetBinContent(i + 1,source[i]);
d->SetLineColor(kRed);
d->Draw("SAME L");
}
Example 3 script Background_width.c :
the question is how to choose the width of the clipping window, i.e., numberIterations parameter. The influence of this parameter on the estimated background is illustrated in Figure 3.
Figure 3 Example of the influence of clipping window width on the estimated background for numberIterations=4 (red line), 6 (blue line) 8 (green line) using decreasing clipping window algorithm.
in general one should set this parameter so that the value 2*numberIterations+1 was greater than the widths of preserved objects (peaks).
Script:
// Example to illustrate the influence of the clipping window width on the estimated background
// To execute this example, do
// root > .x Background_width.C
#include <TSpectrum>
void Background_width() {
Int_t i;
Double_t nbins = 256;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
TH1F *h = new TH1F("h","",nbins,xmin,xmax);
TH1F *d1 = new TH1F("d1","",nbins,xmin,xmax);
TH1F *d2 = new TH1F("d2","",nbins,xmin,xmax);
TH1F *d3 = new TH1F("d3","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("back1;1");
TCanvas *background = gROOT->GetListOfCanvases()->FindObject("background");
if (!background) background = new TCanvas("background","Influence of clipping window width on the estimated background",10,10,1000,700);
h->Draw("L");
TSpectrum *s = new TSpectrum();
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,4,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d1->SetBinContent(i + 1,source[i]);
d1->SetLineColor(kRed);
d1->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,6,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d2->SetBinContent(i + 1,source[i]);
d2->SetLineColor(kBlue);
d2->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,8,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d3->SetBinContent(i + 1,source[i]);
d3->SetLineColor(kGreen);
d3->Draw("SAME L");
}
Example 4 script Background_width2.c :
another example for very complex spectrum is given in Figure 4.
Figure 4 Example of the influence of clipping window width on the estimated background for numberIterations=10 (red line), 20 (blue line), 30 (green line) and 40 (magenta line) using decreasing clipping window algorithm.
Script:
// Example to illustrate the influence of the clipping window width on the estimated background
// To execute this example, do
// root > .x Background_width2.C
#include <TSpectrum>
void Background_width2() {
Int_t i;
Double_t nbins = 4096;
Double_t xmin = 0;
Double_t xmax = (Double_t)4096;
Float_t * source = new float[nbins];
TH1F *h = new TH1F("h","",nbins,xmin,xmax);
TH1F *d1 = new TH1F("d1","",nbins,xmin,xmax);
TH1F *d2 = new TH1F("d2","",nbins,xmin,xmax);
TH1F *d3 = new TH1F("d3","",nbins,xmin,xmax);
TH1F *d4 = new TH1F("d4","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("back2;1");
TCanvas *background = gROOT->GetListOfCanvases()->FindObject("background");
if (!background) background = new TCanvas("background","Influence of clipping window width on the estimated background",10,10,1000,700);
h->SetAxisRange(0,1000);
h->SetMaximum(20000);
h->Draw("L");
TSpectrum *s = new TSpectrum();
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,10,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d1->SetBinContent(i + 1,source[i]);
d1->SetLineColor(kRed);
d1->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,20,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d2->SetBinContent(i + 1,source[i]);
d2->SetLineColor(kBlue);
d2->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,30,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d3->SetBinContent(i + 1,source[i]);
d3->SetLineColor(kGreen);
d3->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,10,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d4->SetBinContent(i + 1,source[i]);
d4->SetLineColor(kMagenta);
d4->Draw("SAME L");
}
Example 5 script Background_order.c :
second order difference filter removes linear (quasi-linear) background and preserves symmetrical peaks.
however if the shape of the background is more complex one can employ higher-order clipping filters (see example in Figure 5)
Figure 5 Example of the influence of clipping filter difference order on the estimated background for fNnumberIterations=40, 2-nd order red line, 4-th order blue line, 6-th order green line and 8-th order magenta line, and using decreasing clipping window algorithm.
Script:
// Example to illustrate the influence of the clipping filter difference order on the estimated background
// To execute this example, do
// root > .x Background_order.C
#include <TSpectrum>
void Background_order() {
Int_t i;
Double_t nbins = 4096;
Double_t xmin = 0;
Double_t xmax = (Double_t)4096;
Float_t * source = new float[nbins];
TH1F *h = new TH1F("h","",nbins,xmin,xmax);
TH1F *d1 = new TH1F("d1","",nbins,xmin,xmax);
TH1F *d2 = new TH1F("d2","",nbins,xmin,xmax);
TH1F *d3 = new TH1F("d3","",nbins,xmin,xmax);
TH1F *d4 = new TH1F("d4","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("back2;1");
TCanvas *background = gROOT->GetListOfCanvases()->FindObject("background");
if (!background) background = new TCanvas("background","Influence of clipping filter difference order on the estimated background",10,10,1000,700);
h->SetAxisRange(1220,1460);
h->SetMaximum(11000);
h->Draw("L");
TSpectrum *s = new TSpectrum();
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,40,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d1->SetBinContent(i + 1,source[i]);
d1->SetLineColor(kRed);
d1->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,40,kBackDecreasingWindow,kBackOrder4,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d2->SetBinContent(i + 1,source[i]);
d2->SetLineColor(kBlue);
d2->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,40,kBackDecreasingWindow,kBackOrder6,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d3->SetBinContent(i + 1,source[i]);
d3->SetLineColor(kGreen);
d3->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,40,kBackDecreasingWindow,kBackOrder8,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d4->SetBinContent(i + 1,source[i]);
d4->SetLineColor(kMagenta);
d4->Draw("SAME L");
}
Example 6 script Background_smooth.c :
the estimate of the background can be influenced by noise present in the spectrum. We proposed the algorithm of the background estimate with simultaneous smoothing
in the original algorithm without smoothing, the estimated background snatches the lower spikes in the noise. Consequently, the areas of peaks are biased by this error.
Figure 7 Principle of background estimation algorithm with simultaneous smoothing
Figure 8 Illustration of non-smoothing (red line) and smoothing algorithm of background estimation (blue line).
Script:
// Example to illustrate the background estimator (class TSpectrum) including Compton edges.
// To execute this example, do
// root > .x Background_smooth.C
#include <TSpectrum>
void Background_smooth() {
Int_t i;
Double_t nbins = 4096;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
TH1F *h = new TH1F("h","",nbins,xmin,xmax);
TH1F *d1 = new TH1F("d1","",nbins,xmin,xmax);
TH1F *d2 = new TH1F("d2","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("back4;1");
TCanvas *background = gROOT->GetListOfCanvases()->FindObject("background");
if (!background) background = new TCanvas("background","Estimation of background with noise",10,10,1000,700);
h->SetAxisRange(3460,3830);
h->Draw("L");
TSpectrum *s = new TSpectrum();
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,6,kBackDecreasingWindow,kBackOrder2,kFALSE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d1->SetBinContent(i + 1,source[i]);
d1->SetLineColor(kRed);
d1->Draw("SAME L");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,6,kBackDecreasingWindow,kBackOrder2,kTRUE,kBackSmoothing3,kFALSE);
for (i = 0; i < nbins; i++) d2->SetBinContent(i + 1,source[i]);
d2->SetLineColor(kBlue);
d2->Draw("SAME L");
}
Example 8 script Background_compton.c :
sometimes it is necessary to include also the Compton edges into the estimate of the background. In Figure 8 we present the example of the synthetic spectrum with Compton edges.
the background was estimated using the 8-th order filter with the estimation of the Compton edges using decreasing clipping window algorithm (numberIterations=10) with smoothing ( smoothingWindow=5).
Figure 8 Example of the estimate of the background with Compton edges (red line) for numberIterations=10, 8-th order difference filter, using decreasing clipping window algorithm and smoothing (smoothingWindow=5).
Script:
// Example to illustrate the background estimator (class TSpectrum) including Compton edges.
// To execute this example, do
// root > .x Background_compton.C
#include <TSpectrum>
void Background_compton() {
Int_t i;
Double_t nbins = 512;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
TH1F *h = new TH1F("h","",nbins,xmin,xmax);
TH1F *d1 = new TH1F("d1","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("back3;1");
TCanvas *background = gROOT->GetListOfCanvases()->FindObject("background");
if (!background) background = new TCanvas("background","Estimation of background with Compton edges under peaks",10,10,1000,700);
h->Draw("L");
TSpectrum *s = new TSpectrum();
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->Background(source,nbins,10,kBackDecreasingWindow,kBackOrder8,kTRUE,kBackSmoothing5,,kTRUE);
for (i = 0; i < nbins; i++) d1->SetBinContent(i + 1,source[i]);
d1->SetLineColor(kRed);
d1->Draw("SAME L");
}
ONE-DIMENSIONAL MARKOV SPECTRUM SMOOTHING FUNCTION This function calculates smoothed spectrum from source spectrum based on Markov chain method. The result is placed in the array pointed by source pointer. Function parameters: source-pointer to the array of source spectrum ssize-length of source array averWindow-width of averaging smoothing window
Smoothing
Goal: Suppression of statistical fluctuations
the algorithm is based on discrete Markov chain, which has very simple invariant distribution
being defined from the normalization condition
n is the length of the smoothed spectrum and
is the probability of the change of the peak position from channel i to the channel i+1. is the normalization constant so that and m is a width of smoothing window.
Function:
const char* SmoothMarkov(float *spectrum, int ssize, int averWindow)
This function calculates smoothed spectrum from the source spectrum based on Markov chain method. The result is placed in the vector pointed by source pointer. On successful completion it returns 0. On error it returns pointer to the string describing error.
Parameters:
spectrum-pointer to the vector of source spectrum
ssize-length of the spectrum vector
averWindow-width of averaging smoothing window
Reference:
[1] Z.K. Silagadze, A new algorithm for automatic photopeak searches. NIM A 376 (1996), 451.
Example 14 script Smoothing.c :
Fig. 23 Original noisy spectrum Fig. 24 Smoothed spectrum m=3
Fig. 25 Smoothed spectrum m=7 Fig.26 Smoothed spectrum m=10
Script:
// Example to illustrate smoothing using Markov algorithm (class TSpectrum).
// To execute this example, do
// root > .x Smoothing.C
//#include <TSpectrum>
void Smoothing() {
Int_t i;
Double_t nbins = 1024;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
TH1F *h = new TH1F("h","Smoothed spectrum for m=3",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("smooth1;1");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
TCanvas *Smooth1 = gROOT->GetListOfCanvases()->FindObject("Smooth1");
if (!Smooth1) Smooth1 = new TCanvas("Smooth1","Smooth1",10,10,1000,700);
TSpectrum *s = new TSpectrum();
s->SmoothMarkov(source,1024,3); //3, 7, 10
for (i = 0; i < nbins; i++) h->SetBinContent(i + 1,source[i]);
h->SetAxisRange(330,880);
h->Draw("L");
}
ONE-DIMENSIONAL DECONVOLUTION FUNCTION This function calculates deconvolution from source spectrum according to response spectrum using Gold algorithm The result is placed in the vector pointed by source pointer. Function parameters: source: pointer to the vector of source spectrum response: pointer to the vector of response spectrum ssize: length of source and response spectra numberIterations, for details we refer to the reference given below numberRepetitions, for repeated boosted deconvolution boost, boosting coefficient M. Morhac, J. Kliman, V. Matousek, M. Veselskŭ, I. Turzo.: Efficient one- and two-dimensional Gold deconvolution and its application to gamma-ray spectra decomposition. NIM, A401 (1997) 385-408.
Deconvolution
Goal: Improvement of the resolution in spectra, decomposition of multiplets
Mathematical formulation of the convolution system is
where h(i) is the impulse response function, x, y are input and output vectors, respectively, N is the length of x and h vectors. In matrix form we have
let us assume that we know the response and the output vector (spectrum) of the above given system.
the deconvolution represents solution of the overdetermined system of linear equations, i.e., the calculation of the vector x.
from numerical stability point of view the operation of deconvolution is extremely critical (ill-posed problem) as well as time consuming operation.
the Gold deconvolution algorithm proves to work very well, other methods (Fourier, VanCittert etc) oscillate.
it is suitable to process positive definite data (e.g. histograms).
Gold deconvolution algorithm
where L is given number of iterations (numberIterations parameter).
Boosted deconvolution
1. Set the initial solution
2. Set required number of repetitions R and iterations L
3. Set r = 1.
4. Using Gold deconvolution algorithm for k=1,2,...,L find
5. If r = R stop calculation, else
a. apply boosting operation, i.e., set
i=0,1,...N-1 and p is boosting coefficient >0.
b. r = r + 1
c. continue in 4.
Function:
const char* Deconvolution(float *source, const float *respMatrix, int ssize, int numberIterations, int numberRepetitions, double boost)
This function calculates deconvolution from source spectrum according to response spectrum using Gold deconvolution algorithm. The result is placed in the vector pointed by source pointer. On successful completion it returns 0. On error it returns pointer to the string describing error. If desired after every numberIterations one can apply boosting operation (exponential function with exponent given by boost coefficient) and repeat it numberRepetitions times.
Parameters:
source-pointer to the vector of source spectrum
respMatrix-pointer to the vector of response spectrum
ssize-length of the spectrum vector
numberIterations-number of iterations (parameter l in the Gold deconvolution
algorithm)
numberRepetitions-number of repetitions for boosted deconvolution. It must be
greater or equal to one.
boost-boosting coefficient, applies only if numberRepetitions is greater than one.
Recommended range <1,2>.
References:
[1] Gold R., ANL-6984, Argonne National Laboratories, Argonne Ill, 1964.
[2] Coote G.E., Iterative smoothing and deconvolution of one- and two-dimensional elemental distribution data, NIM B 130 (1997) 118.
[3] M. Morháč, J. Kliman, V. Matouek, M. Veselskŭ, I. Turzo.: Efficient one- and two-dimensional Gold deconvolution and its application to gamma-ray spectra decomposition. NIM, A401 (1997) 385-408.
[4] Morháč M., Matouek V., Kliman J., Efficient algorithm of multidimensional deconvolution and its application to nuclear data processing, Digital Signal Processing 13 (2003) 144.
Example 8 script Deconvolution.c :
response function (usually peak) should be shifted left to the first non-zero channel (bin) (see Figure 9)
Figure 9 Response spectrum
Figure 10 Principle how the response matrix is composed inside of the Deconvolution function
Figure 11 Example of Gold deconvolution. The original source spectrum is drawn with black color, the spectrum after the deconvolution (10000 iterations) with red color
Script:
// Example to illustrate deconvolution function (class TSpectrum).
// To execute this example, do
// root > .x Deconvolution.C
#include <TSpectrum>
void Deconvolution() {
Int_t i;
Double_t nbins = 256;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
Float_t * response = new float[nbins];
TH1F *h = new TH1F("h","Deconvolution",nbins,xmin,xmax);
TH1F *d = new TH1F("d","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("decon1;1");
TFile *fr = new TFile("spectra\\TSpectrum.root");
d=(TH1F*) fr->Get("decon_response;1");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
for (i = 0; i < nbins; i++) response[i]=d->GetBinContent(i + 1);
TCanvas *Decon1 = gROOT->GetListOfCanvases()->FindObject("Decon1");
if (!Decon1) Decon1 = new TCanvas("Decon1","Decon1",10,10,1000,700);
h->Draw("L");
TSpectrum *s = new TSpectrum();
s->Deconvolution(source,response,256,1000,1,1);
for (i = 0; i < nbins; i++) d->SetBinContent(i + 1,source[i]);
d->SetLineColor(kRed);
d->Draw("SAME L");
}
Examples of Gold deconvolution method
first let us study the influence of the number of iterations on the deconvolved spectrum (Figure 12)
Figure 12 Study of Gold deconvolution algorithm. The original source spectrum is drawn with black color, spectrum after 100 iterations with red color, spectrum after 1000 iterations with blue color, spectrum after 10000 iterations with green color and spectrum after 100000 iterations with magenta color.
for relatively narrow peaks in the above given example the Gold deconvolution method is able to decompose overlapping peaks practically to delta - functions.
in the next example we have chosen a synthetic data (spectrum, 256 channels) consisting of 5 very closely positioned, relatively wide peaks (sigma =5), with added noise (Figure 13).
thin lines represent pure Gaussians (see Table 1); thick line is a resulting spectrum with additive noise (10% of the amplitude of small peaks).
Figure 13 Testing example of synthetic spectrum composed of 5 Gaussians with added noise
Peak # |
Position |
Height |
Area |
1 |
50 |
500 |
10159 |
2 |
70 |
3000 |
60957 |
3 |
80 |
1000 |
20319 |
4 |
100 |
5000 |
101596 |
5 |
110 |
500 |
10159 |
Table 1 Positions, heights and areas of peaks in the spectrum shown in Figure 13
in ideal case, we should obtain the result given in Figure 14. The areas of the Gaussian components of the spectrum are concentrated completely to delta functions
when solving the overdetermined system of linear equations with data from Figure 13 in the sense of minimum least squares criterion without any regularization we obtain the result with large oscillations (Figure 15).
from mathematical point of view, it is the optimal solution in the unconstrained space of independent variables. >From physical point of view we are interested only in a meaningful solution.
therefore, we have to employ regularization techniques (e.g. Gold deconvolution) and/or to confine the space of allowed solutions to subspace of positive solutions.
Figure 14 The same spectrum like in Figure 13, outlined bars show the contents of present components (peaks)
Figure 15 Least squares solution of the system of linear equations without regularization
Example 9 script Deconvolution_wide.c :
when we employ Gold deconvolution algorithm we obtain the result given in Fig. 16. One can observe that the resulting spectrum is smooth. On the other hand the method is not able to decompose completely the peaks in the spectrum.
Figure 16 Example of Gold deconvolution for closely positioned wide peaks. The original source spectrum is drawn with black color, the spectrum after the deconvolution (10000 iterations) with red color
Script:
// Example to illustrate deconvolution function (class TSpectrum).
// To execute this example, do
// root > .x Deconvolution_wide.C
#include <TSpectrum>
void Deconvolution_wide() {
Int_t i;
Double_t nbins = 256;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
Float_t * response = new float[nbins];
TH1F *h = new TH1F("h","Deconvolution",nbins,xmin,xmax);
TH1F *d = new TH1F("d","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("decon3;1");
TFile *fr = new TFile("spectra\\TSpectrum.root");
d=(TH1F*) fr->Get("decon_response_wide;1");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
for (i = 0; i < nbins; i++) response[i]=d->GetBinContent(i + 1);
TCanvas *Decon1 = gROOT->GetListOfCanvases()->FindObject("Decon1");
if (!Decon1) Decon1 = new TCanvas("Decon1","Deconvolution of closely positioned overlapping peaks using Gold deconvolution method",10,10,1000,700);
h->SetMaximum(30000);
h->Draw("L");
TSpectrum *s = new TSpectrum();
s->Deconvolution(source,response,256,10000,1,1);
for (i = 0; i < nbins; i++) d->SetBinContent(i + 1,source[i]);
d->SetLineColor(kRed);
d->Draw("SAME L");
}
Example 10 script Deconvolution_wide_boost.c :
further let us employ boosting operation into deconvolution (Fig. 17)
Figure 17 The original source spectrum is drawn with black color, the spectrum after the deconvolution with red color. Number of iterations = 200, number of repetitions = 50 and boosting coefficient = 1.2.
Peak # |
Original/Estimated (max) position |
Original/Estimated area |
1 |
50/49 |
10159/10419 |
2 |
70/70 |
60957/58933 |
3 |
80/79 |
20319/19935 |
4 |
100/100 |
101596/105413 |
5 |
110/117 |
10159/6676 |
Table 2 Results of the estimation of peaks in spectrum shown in Figure 17
one can observe that peaks are decomposed practically to delta functions. Number of peaks is correct, positions of big peaks as well as their areas are relatively well estimated. However there is a considerable error in the estimation of the position of small right hand peak.
Script:
// Example to illustrate deconvolution function (class TSpectrum).
// To execute this example, do
// root > .x Deconvolution_wide_boost.C
#include <TSpectrum>
void Deconvolution_wide_boost() {
Int_t i;
Double_t nbins = 256;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
Float_t * response = new float[nbins];
TH1F *h = new TH1F("h","Deconvolution",nbins,xmin,xmax);
TH1F *d = new TH1F("d","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("decon3;1");
TFile *fr = new TFile("spectra\\TSpectrum.root");
d=(TH1F*) fr->Get("decon_response_wide;1");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
for (i = 0; i < nbins; i++) response[i]=d->GetBinContent(i + 1);
TCanvas *Decon1 = gROOT->GetListOfCanvases()->FindObject("Decon1");
if (!Decon1) Decon1 = new TCanvas("Decon1","Deconvolution of closely positioned overlapping peaks using boosted Gold deconvolution method",10,10,1000,700);
h->SetMaximum(110000);
h->Draw("L");
TSpectrum *s = new TSpectrum();
s->Deconvolution(source,response,256,200,50,1.2);
for (i = 0; i < nbins; i++) d->SetBinContent(i + 1,source[i]);
d->SetLineColor(kRed);
d->Draw("SAME L");
}
ONE-DIMENSIONAL DECONVOLUTION FUNCTION This function calculates deconvolution from source spectrum according to response spectrum using Richardson-Lucy algorithm The result is placed in the vector pointed by source pointer. Function parameters: source: pointer to the vector of source spectrum response: pointer to the vector of response spectrum ssize: length of source and response spectra numberIterations, for details we refer to the reference given above numberRepetitions, for repeated boosted deconvolution boost, boosting coefficient
Richardson-Lucy deconvolution algorithm
· for discrete systems it has the form
· for positive input data and response matrix this iterative method forces the deconvoluted spectra to be non-negative.
· the Richardson-Lucy iteration converges to the maximum likelihood solution for Poisson statistics in the data.
Function:
const char* DeconvolutionRL(float *source, const float *respMatrix, int ssize, int numberIterations, int numberRepetitions, double boost)
This function calculates deconvolution from source spectrum according to response spectrum using Richardson-Lucy deconvolution algorithm. The result is placed in the vector pointed by source pointer. On successful completion it returns 0. On error it returns pointer to the string describing error. If desired after every numberIterations one can apply boosting operation (exponential function with exponent given by boost coefficient) and repeat it numberRepetitions times (see Gold deconvolution).
Parameters:
source-pointer to the vector of source spectrum
respMatrix-pointer to the vector of response spectrum
ssize-length of the spectrum vector
numberIterations-number of iterations (parameter l in the Gold deconvolution
algorithm)
numberRepetitions-number of repetitions for boosted deconvolution. It must be
greater or equal to one.
boost-boosting coefficient, applies only if numberRepetitions is greater than one.
Recommended range <1,2>.
References:
[1] Abreu M.C. et al., A four-dimensional deconvolution method to correct NA38 experimental data, NIM A 405 (1998) 139.
[2] Lucy L.B., A.J. 79 (1974) 745.
[3] Richardson W.H., J. Opt. Soc. Am. 62 (1972) 55.
Examples of Richardson-Lucy deconvolution method
Example 11 script DeconvolutionRL_wide.c :
when we employ Richardson-Lucy deconvolution algorithm to our data from Fig. 13 we obtain the result given in Fig. 18. One can observe improvements as compared to the result achieved by Gold deconvolution.
neverthless it is unable to decompose the multiplet.
Figure 18 Example of Richardson-Lucy deconvolution for closely positioned wide peaks. The original source spectrum is drawn with black color, the spectrum after the deconvolution (10000 iterations) with red color
Script:
// Example to illustrate deconvolution function (class TSpectrum).
// To execute this example, do
// root > .x DeconvolutionRL_wide.C
#include <TSpectrum>
void DeconvolutionRL_wide() {
Int_t i;
Double_t nbins = 256;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
Float_t * response = new float[nbins];
TH1F *h = new TH1F("h","Deconvolution",nbins,xmin,xmax);
TH1F *d = new TH1F("d","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("decon3;1");
TFile *fr = new TFile("spectra\\TSpectrum.root");
d=(TH1F*) fr->Get("decon_response_wide;1");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
for (i = 0; i < nbins; i++) response[i]=d->GetBinContent(i + 1);
TCanvas *Decon1 = gROOT->GetListOfCanvases()->FindObject("Decon1");
if (!Decon1) Decon1 = new TCanvas("Decon1","Deconvolution of closely positioned overlapping peaks using Richardson-Lucy deconvolution method",10,10,1000,700);
h->SetMaximum(30000);
h->Draw("L");
TSpectrum *s = new TSpectrum();
s->DeconvolutionRL(source,response,256,10000,1,1);
for (i = 0; i < nbins; i++) d->SetBinContent(i + 1,source[i]);
d->SetLineColor(kRed);
d->Draw("SAME L");
}
Example 12 script DeconvolutionRL_wide_boost.c :
further let us employ boosting operation into deconvolution (Fig. 19)
Figure 19 The original source spectrum is drawn with black color, the spectrum after the deconvolution with red color. Number of iterations = 200, number of repetitions = 50 and boosting coefficient = 1.2.
Peak # |
Original/Estimated (max) position |
Original/Estimated area |
1 |
50/51 |
10159/11426 |
2 |
70/71 |
60957/65003 |
3 |
80/81 |
20319/12813 |
4 |
100/100 |
101596/101851 |
5 |
110/111 |
10159/8920 |
Table 3 Results of the estimation of peaks in spectrum shown in Figure 19
one can observe improvements in the estimation of peak positions as compared to the results achieved by Gold deconvolution
Script:
// Example to illustrate deconvolution function (class TSpectrum).
// To execute this example, do
// root > .x DeconvolutionRL_wide_boost.C
#include <TSpectrum>
void DeconvolutionRL_wide_boost() {
Int_t i;
Double_t nbins = 256;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
Float_t * response = new float[nbins];
TH1F *h = new TH1F("h","Deconvolution",nbins,xmin,xmax);
TH1F *d = new TH1F("d","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("decon3;1");
TFile *fr = new TFile("spectra\\TSpectrum.root");
d=(TH1F*) fr->Get("decon_response_wide;1");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
for (i = 0; i < nbins; i++) response[i]=d->GetBinContent(i + 1);
TCanvas *Decon1 = gROOT->GetListOfCanvases()->FindObject("Decon1");
if (!Decon1) Decon1 = new TCanvas("Decon1","Deconvolution of closely positioned overlapping peaks using boosted Richardson-Lucy deconvolution method",10,10,1000,700);
h->SetMaximum(110000);
h->Draw("L");
TSpectrum *s = new TSpectrum();
s->DeconvolutionRL(source,response,256,200,50,1.2);
for (i = 0; i < nbins; i++) d->SetBinContent(i + 1,source[i]);
d->SetLineColor(kRed);
d->Draw("SAME L");
}
ONE-DIMENSIONAL UNFOLDING FUNCTION This function unfolds source spectrum according to response matrix columns. The result is placed in the vector pointed by source pointer. Function parameters: source-pointer to the vector of source spectrum respMatrix-pointer to the matrix of response spectra ssizex-length of source spectrum and # of columns of response matrix ssizey-length of destination spectrum and # of rows of response matrix numberIterations, for details we refer to manual Note!!! ssizex must be >= ssizey
Unfolding
Goal: Decomposition of spectrum to a given set of component spectra
Mathematical formulation of the discrete linear system is
Function:
const char* Unfolding(float *source, const float **respMatrix, int ssizex, int ssizey, int numberIterations, int numberRepetitions, double boost)
This function unfolds source spectrum according to response matrix columns. The result is placed in the vector pointed by source pointer. The coefficients of the resulting vector represent contents of the columns (weights) in the input vector. On successful completion it returns 0. On error it returns pointer to the string describing error. If desired after every numberIterations one can apply boosting operation (exponential function with exponent given by boost coefficient) and repeat it numberRepetitions times. For details we refer to [1].
Parameters:
source-pointer to the vector of source spectrum
respMatrix-pointer to the matrix of response spectra
ssizex-length of source spectrum and # of columns of the response matrix
ssizey-length of destination spectrum and # of rows of the response matrix
numberIterations-number of iterations
numberRepetitions-number of repetitions for boosted deconvolution. It must be
greater or equal to one.
boost-boosting coefficient, applies only if numberRepetitions is greater than one.
Recommended range <1,2>.
Note!!! sizex must be >= sizey After decomposition the resulting channels are written back to the first sizey channels of the source spectrum.
Reference:
[1] Jandel M., Morháč M., Kliman J., Krupa L., Matouek V., Hamilton J. H., Ramaya A. V.: Decomposition of continuum gamma-ray spectra using synthetized response matrix. NIM A 516 (2004), 172-183.
Example of unfolding
Example 13 script Unfolding.c :
Fig. 20 Response matrix composed of neutron spectra of pure chemical elements
Fig. 21 Source neutron spectrum to be decomposed
Fig. 22 Spectrum after decomposition, contains 10 coefficients, which correspond to contents of chemical components (dominant 8-th and 10-th components, i.e. O, Si)
Script:
// Example to illustrate unfolding function (class TSpectrum).
// To execute this example, do
// root > .x Unfolding.C
#include <TSpectrum>
void Unfolding() {
Int_t i, j;
Int_t nbinsx = 2048;
Int_t nbinsy = 10;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbinsx;
Double_t ymin = 0;
Double_t ymax = (Double_t)nbinsy;
Float_t * source = new float[nbinsx];
Float_t ** response = new float *[nbinsy];
for (i=0;i<nbinsy;i++)
response[i]=new float[nbinsx];
TH1F *h = new TH1F("h","",nbinsx,xmin,xmax);
TH1F *d = new TH1F("d","Decomposition - unfolding",nbinsx,xmin,xmax);
TH2F *decon_unf_resp = new TH2F("decon_unf_resp","Root File",nbinsy,ymin,ymax,nbinsx,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("decon_unf_in;1");
TFile *fr = new TFile("spectra\\TSpectrum.root");
decon_unf_resp = (TH2F*) fr->Get("decon_unf_resp;1");
for (i = 0; i < nbinsx; i++) source[i] = h->GetBinContent(i + 1);
for (i = 0; i < nbinsy; i++){
for (j = 0; j< nbinsx; j++){
response[i][j] = decon_unf_resp->GetBinContent(i + 1, j + 1);
}
}
TCanvas *Decon1 = gROOT->GetListOfCanvases()->FindObject("Decon1");
if (!Decon1) Decon1 = new TCanvas("Decon1","Decon1",10,10,1000,700);
h->Draw("L");
TSpectrum *s = new TSpectrum();
s->Unfolding(source,response,nbinsx,nbinsy,1000,1,1);
for (i = 0; i < nbinsy; i++) d->SetBinContent(i + 1,source[i]);
d->SetLineColor(kRed);
d->SetAxisRange(0,nbinsy);
d->Draw("");
}
ONE-DIMENSIONAL HIGH-RESOLUTION PEAK SEARCH FUNCTION This function searches for peaks in source spectrum It is based on deconvolution method. First the background is removed (if desired), then Markov spectrum is calculated (if desired), then the response function is generated according to given sigma and deconvolution is carried out. Function parameters: source-pointer to the vector of source spectrum destVector-pointer to the vector of resulting deconvolved spectrum * ssize-length of source spectrum sigma-sigma of searched peaks, for details we refer to manual threshold-threshold value in % for selected peaks, peaks with amplitude less than threshold*highest_peak/100 are ignored, see manual backgroundRemove-logical variable, set if the removal of background before deconvolution is desired deconIterations-number of iterations in deconvolution operation markov-logical variable, if it is true, first the source spectrum is replaced by new spectrum calculated using Markov chains method. averWindow-averanging window of searched peaks, for details we refer to manual (applies only for Markov method)
Peaks searching
Goal: to identify automatically the peaks in spectrum with the presence of the continuous background and statistical fluctuations - noise.
The common problems connected with correct peak identification are
Function:
Int_t SearchHighRes(float *source,float *destVector, int ssize, float sigma, double threshold, bool backgroundRemove,int deconIterations, bool markov, int averWindow)
This function searches for peaks in source spectrum. It is based on deconvolution method. First the background is removed (if desired), then Markov smoothed spectrum is calculated (if desired), then the response function is generated according to given sigma and deconvolution is carried out. The order of peaks is arranged according to their heights in the spectrum after background elimination. The highest peak is the first in the list. On success it returns number of found peaks.
Parameters:
source-pointer to the vector of source spectrum
destVector-resulting spectrum after deconvolution
ssize-length of the source and destination spectra
sigma-sigma of searched peaks
threshold- threshold value in % for selected peaks, peaks with amplitude less than threshold*highest_peak/100 are ignored
backgroundRemove- background_remove-logical variable, true if the removal of background before deconvolution is desired
deconIterations-number of iterations in deconvolution operation
markov-logical variable, if it is true, first the source spectrum is replaced by new spectrum calculated using Markov chains method
averWindow-width of averaging smoothing window
Fig. 27 An example of one-dimensional synthetic spectrum with found peaks denoted by markers
References:
[1] M.A. Mariscotti: A method for identification of peaks in the presence of background and its application to spectrum analysis. NIM 50 (1967), 309-320.
[2] M. Morháč, J. Kliman, V. Matouek, M. Veselskŭ, I. Turzo.:Identification of peaks in multidimensional coincidence gamma-ray spectra. NIM, A443 (2000) 108-125.
[3] Z.K. Silagadze, A new algorithm for automatic photopeak searches. NIM A 376 (1996), 451.
Examples of peak searching method
SearchHighRes function provides users with the possibility to vary the input parameters and with the access to the output deconvolved data in the destination spectrum. Based on the output data one can tune the parameters.
Example 15 script SearchHR1.c:
Fig. 28 One-dimensional spectrum with found peaks denoted by markers, 3 iterations steps in the deconvolution
Fig. 29 One-dimensional spectrum with found peaks denoted by markers, 8 iterations steps in the deconvolution
Script:
// Example to illustrate high resolution peak searching function (class TSpectrum).
// To execute this example, do
// root > .x SearchHR1.C
#include <TSpectrum>
void SearchHR1() {
Float_t fPositionX[100];
Float_t fPositionY[100];
Int_t fNPeaks = 0;
Int_t i,nfound,bin;
Double_t nbins = 1024,a;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
Float_t * dest = new float[nbins];
TH1F *h = new TH1F("h","High resolution peak searching, number of iterations = 3",nbins,xmin,xmax);
TH1F *d = new TH1F("d","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("search2;1");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
TCanvas *Search = gROOT->GetListOfCanvases()->FindObject("Search");
if (!Search) Search = new TCanvas("Search","Search",10,10,1000,700);
h->SetMaximum(4000);
h->Draw("L");
TSpectrum *s = new TSpectrum();
nfound = s->SearchHighRes(source, dest, nbins, 8, 2, kTRUE, 3, kTRUE, 3);
Float_t *xpeaks = s->GetPositionX();
for (i = 0; i < nfound; i++) {
a=xpeaks[i];
bin = 1 + Int_t(a + 0.5);
fPositionX[i] = h->GetBinCenter(bin);
fPositionY[i] = h->GetBinContent(bin);
}
TPolyMarker * pm = (TPolyMarker*)h->GetListOfFunctions()->FindObject("TPolyMarker");
if (pm) {
h->GetListOfFunctions()->Remove(pm);
delete pm;
}
pm = new TPolyMarker(nfound, fPositionX, fPositionY);
h->GetListOfFunctions()->Add(pm);
pm->SetMarkerStyle(23);
pm->SetMarkerColor(kRed);
pm->SetMarkerSize(1.3);
for (i = 0; i < nbins; i++) d->SetBinContent(i + 1,dest[i]);
d->SetLineColor(kRed);
d->Draw("SAME");
printf("Found %d candidate peaks\n",nfound);
for(i=0;i<nfound;i++)
printf("posx= %d, posy= %d\n",fPositionX[i], fPositionY[i]);
}
Example 16 script SearchHR3.c:
Peak # |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 4 Positions and sigma of peaks in the following examples
Fig. 30 Influence of number of iterations (3-red, 10-blue, 100- green, 1000-magenta), sigma=8, smoothing width=3
Fig. 31 Influence of sigma (3-red, 8-blue, 20- green, 43-magenta), num. iter.=10, sm. width=3
Fig. 32 Influence smoothing width (0-red, 3-blue, 7- green, 20-magenta), num. iter.=10, sigma=8
Script:
// Example to illustrate the influence of number of iterations in deconvolution in high resolution peak searching function (class TSpectrum).
// To execute this example, do
// root > .x SearchHR3.C
#include <TSpectrum>
void SearchHR3() {
Float_t fPositionX[100];
Float_t fPositionY[100];
Int_t fNPeaks = 0;
Int_t i,nfound,bin;
Double_t nbins = 1024,a;
Double_t xmin = 0;
Double_t xmax = (Double_t)nbins;
Float_t * source = new float[nbins];
Float_t * dest = new float[nbins];
TH1F *h = new TH1F("h","Influence of # of iterations in deconvolution in peak searching",nbins,xmin,xmax);
TH1F *d1 = new TH1F("d1","",nbins,xmin,xmax);
TH1F *d2 = new TH1F("d2","",nbins,xmin,xmax);
TH1F *d3 = new TH1F("d3","",nbins,xmin,xmax);
TH1F *d4 = new TH1F("d4","",nbins,xmin,xmax);
TFile *f = new TFile("spectra\\TSpectrum.root");
h=(TH1F*) f->Get("search3;1");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
TCanvas *Search = gROOT->GetListOfCanvases()->FindObject("Search");
if (!Search) Search = new TCanvas("Search","Search",10,10,1000,700);
h->SetMaximum(1300);
h->Draw("L");
TSpectrum *s = new TSpectrum();
nfound = s->SearchHighRes(source, dest, nbins, 8, 2, kTRUE, 3, kTRUE, 3);
Float_t *xpeaks = s->GetPositionX();
for (i = 0; i < nfound; i++) {
a=xpeaks[i];
bin = 1 + Int_t(a + 0.5);
fPositionX[i] = h->GetBinCenter(bin);
fPositionY[i] = h->GetBinContent(bin);
}
TPolyMarker * pm = (TPolyMarker*)h->GetListOfFunctions()->FindObject("TPolyMarker");
if (pm) {
h->GetListOfFunctions()->Remove(pm);
delete pm;
}
pm = new TPolyMarker(nfound, fPositionX, fPositionY);
h->GetListOfFunctions()->Add(pm);
pm->SetMarkerStyle(23);
pm->SetMarkerColor(kRed);
pm->SetMarkerSize(1.3);
for (i = 0; i < nbins; i++) d1->SetBinContent(i + 1,dest[i]);
h->Draw("");
d1->SetLineColor(kRed);
d1->Draw("SAME");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->SearchHighRes(source, dest, nbins, 8, 2, kTRUE, 10, kTRUE, 3);
for (i = 0; i < nbins; i++) d2->SetBinContent(i + 1,dest[i]);
d2->SetLineColor(kBlue);
d2->Draw("SAME");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->SearchHighRes(source, dest, nbins, 8, 2, kTRUE, 100, kTRUE, 3);
for (i = 0; i < nbins; i++) d3->SetBinContent(i + 1,dest[i]);
d3->SetLineColor(kGreen);
d3->Draw("SAME");
for (i = 0; i < nbins; i++) source[i]=h->GetBinContent(i + 1);
s->SearchHighRes(source, dest, nbins, 8, 2, kTRUE, 1000, kTRUE, 3);
for (i = 0; i < nbins; i++) d4->SetBinContent(i + 1,dest[i]);
d4->SetLineColor(kMagenta);
d4->Draw("SAME");
printf("Found %d candidate peaks\n",nfound);
}
Old name of SearcHighRes introduced for back compatibility This function will be removed after the June 2006 release
static function, interface to TSpectrum::Background