class TUnfold: public TObject


 TUnfold solves the inverse problem

   chi**2 = 1/2 * (y-Ax)# V (y-Ax) + tau (L(x-x0))# L(x-x0)

 where # means that the matrix is transposed

 Monte Carlo input

   y: vector of measured quantities  (dimension ny)
   V: inverse of covariance matrix for y (dimension ny x ny)
      in many cases V is diagonal and calculated from the errors of y
   A: migration matrix               (dimension ny x nx)
   x: unknown underlying distribution (dimension nx)

 Regularisation

   tau: parameter, defining the regularisation strength
   L: matrix of regularisation conditions (dimension nl x nx)
   x0: bias distribution

 and chi**2 is minimized as a function of x

 This applies to a very large number of problems, where the measured
 distribution y is a linear superposition of several Monte Carlo shapes
 and the sum of these shapes gives the output distribution x



 Some random examples:

   (1) measure a cross-section as a function of, say, E_T(detector)
        and unfold it to obtain the underlying distribution E_T(generator)
   (2) measure a lifetime distribution and unfold the contributions from
        different flavours
   (3) measure the transverse mass and decay angle
        and unfold for the true mass distribution plus background



 References:

 Talk by V. Blobel, Terascale Statistics school
   https://indico.desy.de/contributionDisplay.py?contribId=23&confId=1149
 References quoted in Blobel's talk:
   Per Chistian Hansen, Rank-Deficient and Discrete Ill-posed Problems,
        Siam (1998)
   Jari Kaipio and Erkki Somersalo, Statistical and Computational
        Inverse problems, Springer (2005)



 Implementation

 The result of the unfolding is calculated as follows:

    Lsquared = L#L                 regularisation conditions squared

    Einv  = ((A# V A)+tau Lsquared)    is the inverse covariance matrix of x

    E = inverse(Einv)                  is the covariance matrix of x

    x = E A V y + tau Lsquared x0   is the result



 Warning:

  The algorithm is based on "standard" matrix inversion, with the
  known limitations in numerical accuracy and computing cost for
  matrices with large dimensions.

  Thus the algorithm should not used for large dimensions of x and y
    nx should not be much larger than 200
    ny should not be much larger than 1000



 Example of using TUnfold:

 imagine a 2-dimensional histogram is filled, named A
    y-axis: generated quantity (e.g. 10 bins)
    x-axis: reconstructed quantity (e.g. 20 bin)
 The data are filled in a 1-dimensional histogram, named y
 Note1: ALWAYS choose a higher number of bins on the reconstructed side
         as compared to the generated size!
 Note2: the events which are generated but not reconstructed
         have to be added to the appropriate overflow bins of A

 code fragment (with histograms A and y filled):

      TUnfold unfold(A,TUnfold::kHistMapOutputHoriz);
      Double_t tau=1.E-4;
      Double_t biasScale=0.0;
      unfold.DoUnfold(tau,y,biasScale);
      TH1D *x=unfold.GetOutput("x","myVariable");
      TH2D *rhoij=unfold.GetRhoIJ("correlation","myVariable");

 will create histograms "x" and "correlation" from A and y.
 if tau is very large, the output is biased to the generated distribution
 if tau is very small, the output will show oscillations
 and large entries in the correlation matrix



 Proper choice of tau

 One of the most difficult questions is about the choice of tau. The most
 common method is the L-curve method: a two-dimensional curve is plotted
   x-axis: log10(chisquare)
   y-axis: log10(regularisation condition)
 In many cases this curve has an L-shape. The best choice of tau is in the
 kink of the L

 Within TUnfold a simple version of the L-curve analysis is included.
 It tests a given number of points in a predefined tau-range and searches
 for the maximum of the curvature in the L-curve (kink position).

 Example: scan tau and produce the L-curve plot

 Code fragment: assume A and y are filled

      TUnfold unfold(A,TUnfold::kHistMapOutputHoriz);

      unfold.SetInput(y);

      Int_t nScan=30;
      Double_t tauMin=1.E-10;
      Double_t tauMax=1.0;
      Int_t iBest;
      TSpline *logTauX,*logTauY;
      TGraph *lCurve;

      iBest=unfold.ScanLcurve(nScan,tauMin,tauMax,&lCurve);

      std::cout<<"tau="<<unfold.GetTau()<<"\n";

      TH1D *x=unfold.GetOutput("x","myVariable");
      TH2D *rhoij=unfold.GetRhoIJ("correlation","myVariable");

 This creates
    logTauX: the L-curve's x-coordinate as a function of log(tau)
    logTauY: the L-curve's y-coordinate as a function of log(tau)
    lCurve: a graph of the L-curve
    x,rhoij: unfolding result for best choice of tau
    iBest: the coordinate/spline knot number with the best choice of tau

 Note: always check the L curve after unfolding. The algorithm is not
    perfect


 Bin averaging of the output

 Sometimes it is useful to unfold for a fine binning in x and
 calculate the final result with a smaller number of bins. The advantage
 is a reduction in the correlation coefficients if bins are averaged.
 For this type of averaging the full error matrix has to be used.
 There are methods in TUnfold to support this type of calculation
 Example:
    The vector x has dimension 49, it consists of 7x7 bins
      in two variables (Pt,Eta)
    The unfolding result is to be presented as one-dimensional projections
    in (Pt) and (Eta)
    The bins of x are mapped as: bins 1..7 the first Eta bin
                                 bins 2..14 the second Eta bin

                                 bins 1,8,15,... the first Pt bin

 code fragment:

      TUnfold unfold(A,TUnfold::kHistMapOutputHoriz);
      Double_t tau=1.E-4;
      Double_t biasScale=0.0;
      unfold.DoUnfold(tau,y,biasScale);
      Int_t binMapEta[49+2];
      Int_t binMapPt[49+2];
      // overflow and underflow bins are not used
      binMapEta[0]=-1;
      binMapEta[49+1]=-1;
      binMapPt[0]=-1;
      binMapPt[49+1]=-1;
      for(Int_t i=1;i<=49;i++) {
         // all bins (i) with the same (i-1)/7 are added
         binMapEta[i] = (i-1)/7 +1;
         // all bins (i) with the same (i-1)%7 are added
         binMapPt[i]  = (i-1)%7 +1;
      }
      TH1D *etaHist=new TH1D("eta(unfolded)",";eta",7,etamin,etamax);
      TH1D *etaCorr=new TH2D("eta(unfolded)",";eta;eta",7,etamin,etamax,7,etamin,etamax);
      TH1D *ptHist=new TH1D("pt(unfolded)",";pt",7,ptmin,ptmax);
      TH1D *ptCorr=new TH2D("pt(unfolded)",";pt;pt",7,ptmin,ptmax,7,ptmin,ptmax);
      unfold.GetOutput(etaHist,binMapEta);
      unfold.GetRhoIJ(etaCorrt,binMapEta);
      unfold.GetOutput(ptHist,binMapPt);
      unfold.GetRhoIJ(ptCorrt,binMapPt);



 Alternative Regularisation conditions

 Regularisation is needed for most unfolding problems, in order to avoid
 large oscillations and large correlations on the output bins.
 It means that some extra conditions are applied on the output bins

 Within TUnfold these conditions are posed on the difference (x-x0), where
    x:  unfolding output
    x0: the bias distribution, by default calculated from
        the input matrix A. There is a method SetBias() to change the
        bias distribution.
        The 3rd argument to DoUnfold() is a scale factor applied to the bias
          bias_default[j] = sum_i A[i][j]
          x0[j] = scaleBias*bias[j]
        The scale factor can be used to
         (a) completely suppress the bias by setting it to zero
         (b) compensate differences in the normalisation between data
             and Monte Carlo

 If the regularisation is strong, i.e. large parameter tau,
 then the distribution x or its derivatives will look like the bias
 distribution. If the parameter tau is small, the distribution x is
 independent of the bias.

 Three basic types of regularisation are implemented in TUnfold

    condition            regularisation

    kRegModeNone         none
    kRegModeSize         minimize the size of (x-x0)
    kRegModeDerivative   minimize the 1st derivative of (x-x0)
    kRegModeCurvature    minimize the 2nd derivative of (x-x0)

 kRegModeSize is the regularisation scheme which usually is found in
 literature. In addition, the bias usually is not present
 (bias scale factor is zero).

 The non-standard regularisation schemes kRegModeDerivative and
 kRegModeCurvature have the nice feature that they create correlations
 between x-bins, whereas the non-regularized unfolding tends to create
 negative correlations between bins. For these regularisation schemes the
 parameter tau could be tuned such that the correlations are smallest,
 as an alternative to the L-curve method.

 If kRegModeSize is chosen or if x is a smooth function through all bins,
 the regularisation condition can be set on all bins together by giving
 the appropriate argument in the constructor (see examples above).

 If x is composed of independent groups of bins (for example,
 signal and background binning in two variables), it may be necessary to
 set regularisation conditions for the individual groups of bins.
 In this case,  give  kRegModeNone  in the constructor and specify
 the bin grouping with calls to
          RegularizeBins()   specify a 1-dimensional group of bins
          RegularizeBins2D() specify a 2-dimensional group of bins

 For ultimate flexibility, the regularisation condition can be set on each
 bin individually
  -> give  kRegModeNone  in the constructor and use
      RegularizeSize()        regularize one bin
      RegularizeDerivative()  regularize the slope given by two bins
      RegularizeCurvature()   regularize the curvature given by three bins

Function Members (Methods)

public:
TUnfold(const TUnfold&)
TUnfold(TH2 *const hist_A, TUnfold::EHistMap histmap, TUnfold::ERegMode regmode = kRegModeSize)
virtual~TUnfold()
voidTObject::AbstractMethod(const char* method) const
virtual voidTObject::AppendPad(Option_t* option = "")
virtual voidTObject::Browse(TBrowser* b)
static TClass*Class()
virtual const char*TObject::ClassName() const
virtual voidTObject::Clear(Option_t* = "")
virtual TObject*TObject::Clone(const char* newname = "") const
virtual Int_tTObject::Compare(const TObject* obj) const
virtual voidTObject::Copy(TObject& object) const
virtual voidTObject::Delete(Option_t* option = "")MENU
virtual Int_tTObject::DistancetoPrimitive(Int_t px, Int_t py)
virtual Double_tDoUnfold(Double_t const& tau)
Double_tDoUnfold(Double_t const& tau, TH1 *const hist_y, Double_t const& scaleBias = 0.0)
virtual voidTObject::Draw(Option_t* option = "")
virtual voidTObject::DrawClass() constMENU
virtual TObject*TObject::DrawClone(Option_t* option = "") constMENU
virtual voidTObject::Dump() constMENU
virtual voidTObject::Error(const char* method, const char* msgfmt) const
virtual voidTObject::Execute(const char* method, const char* params, Int_t* error = 0)
virtual voidTObject::Execute(TMethod* method, TObjArray* params, Int_t* error = 0)
virtual voidTObject::ExecuteEvent(Int_t event, Int_t px, Int_t py)
virtual voidTObject::Fatal(const char* method, const char* msgfmt) const
virtual TObject*TObject::FindObject(const char* name) const
virtual TObject*TObject::FindObject(const TObject* obj) const
TH1D*GetBias(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
const Double_t&GetChi2A() const
const Double_t&GetChi2L() const
virtual Option_t*TObject::GetDrawOption() const
static Long_tTObject::GetDtorOnly()
voidGetEmatrix(TH2* ematrix, Int_t *const binMap = 0) const
TH2D*GetEmatrix(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
TH1D*GetFoldedOutput(char *const name, char *const title, Double_t y0 = 0.0, Double_t y1 = 0.0) const
virtual const char*TObject::GetIconName() const
TH1D*GetInput(char *const name, char *const title, Double_t y0 = 0.0, Double_t y1 = 0.0) const
Double_tGetLcurveX() const
Double_tGetLcurveY() const
TH2D*GetLsquared(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
virtual const char*TObject::GetName() const
virtual char*TObject::GetObjectInfo(Int_t px, Int_t py) const
static Bool_tTObject::GetObjectStat()
virtual Option_t*TObject::GetOption() const
voidGetOutput(TH1* output, Int_t *const binMap = 0) const
TH1D*GetOutput(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
const Double_t&GetRhoAvg() const
Double_tGetRhoI(TH1* rhoi, TH2* ematrixinv = 0, Int_t *const binMap = 0) const
TH1D*GetRhoI(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
voidGetRhoIJ(TH2* rhoij, Int_t *const binMap = 0) const
TH2D*GetRhoIJ(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
const Double_t&GetRhoMax() const
const Double_t&GetTau() const
virtual const char*TObject::GetTitle() const
virtual UInt_tTObject::GetUniqueID() const
virtual Bool_tTObject::HandleTimer(TTimer* timer)
virtual ULong_tTObject::Hash() const
virtual voidTObject::Info(const char* method, const char* msgfmt) const
virtual Bool_tTObject::InheritsFrom(const char* classname) const
virtual Bool_tTObject::InheritsFrom(const TClass* cl) const
virtual voidTObject::Inspect() constMENU
voidTObject::InvertBit(UInt_t f)
virtual TClass*IsA() const
virtual Bool_tTObject::IsEqual(const TObject* obj) const
virtual Bool_tTObject::IsFolder() const
Bool_tTObject::IsOnHeap() const
virtual Bool_tTObject::IsSortable() const
Bool_tTObject::IsZombie() const
virtual voidTObject::ls(Option_t* option = "") const
voidTObject::MayNotUse(const char* method) const
virtual Bool_tTObject::Notify()
static voidTObject::operator delete(void* ptr)
static voidTObject::operator delete(void* ptr, void* vp)
static voidTObject::operator delete[](void* ptr)
static voidTObject::operator delete[](void* ptr, void* vp)
void*TObject::operator new(size_t sz)
void*TObject::operator new(size_t sz, void* vp)
void*TObject::operator new[](size_t sz)
void*TObject::operator new[](size_t sz, void* vp)
TUnfold&operator=(const TUnfold&)
virtual voidTObject::Paint(Option_t* option = "")
virtual voidTObject::Pop()
virtual voidTObject::Print(Option_t* option = "") const
virtual Int_tTObject::Read(const char* name)
virtual voidTObject::RecursiveRemove(TObject* obj)
voidRegularizeBins(int start, int step, int nbin, TUnfold::ERegMode regmode)
voidRegularizeBins2D(int start_bin, int step1, int nbin1, int step2, int nbin2, TUnfold::ERegMode regmode)
voidRegularizeCurvature(int left_bin, int center_bin, int right_bin, Double_t const& scale_left = 1.0, Double_t const& scale_right = 1.0)
voidRegularizeDerivative(int left_bin, int right_bin, Double_t const& scale = 1.0)
voidRegularizeSize(int bin, Double_t const& scale = 1.0)
voidTObject::ResetBit(UInt_t f)
virtual voidTObject::SaveAs(const char* filename = "", Option_t* option = "") constMENU
virtual voidTObject::SavePrimitive(basic_ostream<char,char_traits<char> >& out, Option_t* option = "")
virtual Int_tScanLcurve(Int_t nPoint, Double_t const& tauMin, Double_t const& tauMax, TGraph** lCurve, TSpline** logTauX = 0, TSpline** logTauY = 0)
voidSetBias(TH1 *const bias)
voidTObject::SetBit(UInt_t f)
voidTObject::SetBit(UInt_t f, Bool_t set)
virtual voidTObject::SetDrawOption(Option_t* option = "")MENU
static voidTObject::SetDtorOnly(void* obj)
voidSetInput(TH1 *const hist_y, Double_t const& scaleBias = 0.0)
static voidTObject::SetObjectStat(Bool_t stat)
virtual voidTObject::SetUniqueID(UInt_t uid)
virtual voidShowMembers(TMemberInspector& insp, char* parent)
virtual voidStreamer(TBuffer& b)
voidStreamerNVirtual(TBuffer& b)
virtual voidTObject::SysError(const char* method, const char* msgfmt) const
Bool_tTObject::TestBit(UInt_t f) const
Int_tTObject::TestBits(UInt_t f) const
virtual voidTObject::UseCurrentStyle()
virtual voidTObject::Warning(const char* method, const char* msgfmt) const
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0)
virtual Int_tTObject::Write(const char* name = 0, Int_t option = 0, Int_t bufsize = 0) const
protected:
TUnfold()
virtual voidCalculateChi2Rho()
static TMatrixDSparse*CreateSparseMatrix(Int_t nr, Int_t nc, Int_t* row, Int_t* col, Double_t *const data)
virtual voidTObject::DoError(int level, const char* location, const char* fmt, va_list va) const
virtual Double_tDoUnfold()
Int_tGetNx() const
Int_tGetNy() const
voidTObject::MakeZombie()
private:
voidClearTUnfold()

Data Members

public:
enum EHistMap { kHistMapOutputHoriz
kHistMapOutputVert
};
enum ERegMode { kRegModeNone
kRegModeSize
kRegModeDerivative
kRegModeCurvature
};
enum TObject::EStatusBits { kCanDelete
kMustCleanup
kObjInCanvas
kIsReferenced
kHasUUID
kCannotPick
kNoContextMenu
kInvalidObject
};
enum TObject::[unnamed] { kIsOnHeap
kNotDeleted
kZombie
kBitMask
kSingleKey
kOverwrite
kWriteDelete
};
protected:
TMatrixDSparse*fAInput: matrix
TMatrixDSparse*fAxResult: Ax
Double_tfBiasScaleInput: scale factor for the bias
Double_tfChi2AResult: chi**2 contribution from (y-Ax)V(y-Ax)
Double_tfChi2LResult: chi**2 contribution from tau(x-s*x0)Lsquared(x-s*x0)
TMatrixD*fEResult: error matrix
TMatrixDSparse*fEinvResult: inverse error matrix
TArrayIfHistToXInput: histogram bins -> matrix indices
TMatrixDSparse*fLsquaredInput: regularisation conditions squared
Double_tfRhoAvgResult: average global correlation
Double_tfRhoMaxResult: maximum global correlation
Double_tfTauInput: regularisation parameter
TMatrixDSparse*fVInput: covariance matrix for y
TMatrixD*fXResult: x
TMatrixD*fX0Input: x0
TArrayIfXToHistInput: matrix indices -> histogram bins
TMatrixD*fYInput: y

Class Charts

Inheritance Inherited Members Includes Libraries
Class Charts

Function documentation

void ClearTUnfold(void)
 reset all data members
TUnfold(const TUnfold& )
 set all matrix pointers to zero
Double_t DoUnfold(Double_t const& tau)
 main unfolding algorithm. Declared virtual, because other algorithms
 could be implemented

 Purpose: unfold y -> x
 Data members required:
     fA:  matrix to relate x and y
     fY:  measured data points
     fX0: bias on x
     fBiasScale: scale factor for fX0
     fV:  inverse of covariance matrix for y
     fLsquared: regularisation conditions
     fTau: regularisation strength
 Data members modified:
     fEinv: inverse of the covariance matrix of x
     fE:    covariance matrix of x
     fX:    unfolded data points
     fAx:   estimate of y from x
     fChi2A:  contribution to chi**2 from y-fAx
     fChi2L:  contribution to chi**2 from L*(x-x0)
     fRhoMax: maximum global correlation coefficient
     fRhoAvg: average global correlation coefficient
 return code:
     fRhoMax   if(fRhoMax>=1.0) then the unfolding has failed!
void CalculateChi2Rho(void)
 Calculate chi**2 and maximum global correlation
 Data members required:
   fY,fAx,fV,fX,fX0,fBiasScale,fTau,fLsquared
 Data members modified:
   fChi2A,fChi2L,fRhoMax,fRhoAvg
TMatrixDSparse * CreateSparseMatrix(Int_t nr, Int_t nc, Int_t* row, Int_t* col, Double_t *const data)
 Create a sparse matrix, to set up fA or fV.
   nr,nc: number of rows and columns
   row:   row index array
   col:   column index array
   data:  non-zero matrix elements
 Return value:
   a new matrix

 This implementation cirumvents certain problems with TMatrixDSparse
 constructors. Eventually calls to this method should be replaced
 by something like
    new TMatrixDSparse( some_arguments )
TUnfold(TH2 *const hist_A, TUnfold::EHistMap histmap, TUnfold::ERegMode regmode = kRegModeSize)
 set up unfolding matrix and initial regularisation scheme
    hist_A:  matrix that describes the migrations
    histmap: mapping of the histogram axes to unfolding output
    regmode: global regularisation mode
 data members initialized to something different from zero:
    fA: filled from hist_A
    fX0: filled from hist_A
    fLsquared: filled depending on the regularisation scheme
 Treatment of overflow bins
    Bins where the unfolding input (Detector level) is in overflow
    are used for the efficiency correction. They have to be filled
    properly!
    Bins where the unfolding output (Generator level) is in overflow
    are treated as a part of the generator level distribution.
    I.e. the unfolding output could have non-zero overflow bins if the
    input matrix does have such bins.
~TUnfold(void)
 delete all data members
void SetBias(TH1 *const bias)
 initialize alternative bias from histogram
 modifies data member fX0
void RegularizeSize(int bin, Double_t const& scale = 1.0)
 add regularisation on the size of bin i
    bin: bin number
    scale: size of the regularisation
 modifies data member fLsquared
void RegularizeDerivative(int left_bin, int right_bin, Double_t const& scale = 1.0)
 add regularisation on the difference of two bins
   left_bin: 1st bin
   right_bin: 2nd bin
   scale: size of the regularisation
 modifies data member fLsquared
void RegularizeCurvature(int left_bin, int center_bin, int right_bin, Double_t const& scale_left = 1.0, Double_t const& scale_right = 1.0)
 add regularisation on the curvature through 3 bins (2nd derivative)
   left_bin: 1st bin
   center_bin: 2nd bin
   right_bin: 3rd bin
   scale_left: scale factor on center-left difference
   scale_right: scale factor on right-center difference
 modifies data member fLsquared
void RegularizeBins(int start, int step, int nbin, TUnfold::ERegMode regmode)
 set regulatisation on a 1-dimensional curve
   start: first bin
   step:  distance between neighbouring bins
   nbin:  total number of bins
   regmode:  regularisation mode
 modifies data member fLsquared
void RegularizeBins2D(int start_bin, int step1, int nbin1, int step2, int nbin2, TUnfold::ERegMode regmode)
 set regularisation on a 2-dimensional grid of bins
     start: first bin
     step1: distance between bins in 1st direction
     nbin1: number of bins in 1st direction
     step2: distance between bins in 2nd direction
     nbin2: number of bins in 2nd direction
 modifies data member fLsquared
Double_t DoUnfold(Double_t const& tau, TH1 *const hist_y, Double_t const& scaleBias = 0.0)
 Do unfolding of an input histogram
   tau_reg: regularisation parameter
   input:   input distribution with errors
   scaleBias:  scale factor applied to the bias
 Data members required:
   fA, fX0, fLsquared
 Data members modified:
   those documented in SetInput()
   and those documented in DoUnfold(Double_t)
 Return value:
   maximum global correlation coefficient
   NOTE!!! return value >=1.0 means error, and the result is junk

 Overflow bins of the input distribution are ignored!
void SetInput(TH1 *const hist_y, Double_t const& scaleBias = 0.0)
 Define the input data for subsequent calls to DoUnfold(Double_t)
   input:   input distribution with errors
   scaleBias:  scale factor applied to the bias
 Data members modified:
   fY, fV, fBiasScale
Double_t DoUnfold(Double_t const& tau)
 Unfold with given value of regularisation parameter tau
     tau: new tau parameter
 required data members:
     fA:  matrix to relate x and y
     fY:  measured data points
     fX0: bias on x
     fBiasScale: scale factor for fX0
     fV:  inverse of covariance matrix for y
     fLsquared: regularisation conditions
 modified data members:
     fTau and those documented in DoUnfold(void)
Int_t ScanLcurve(Int_t nPoint, Double_t const& tauMin, Double_t const& tauMax, TGraph** lCurve, TSpline** logTauX = 0, TSpline** logTauY = 0)
 scan the L curve
   nPoint: number of points to scan
   tauMin: smallest tau value to study
   tauMax: largest tau value to study
   lCurve: the L curve as graph
   logTauX: output spline of x-coordinates vs tau for the L curve
   logTauY: output spline of y-coordinates vs tau for the L curve
 return value: the coordinate number (0..nPoint-1) with the "best" choice
     of tau
TH1D * GetOutput(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
 retreive unfolding result as histogram
   name:  name of the histogram
   title: title of the histogram
   x0,x1: lower/upper edge of histogram.
          if (x0>=x1) then x0=0 and x1=nbin are used
TH1D * GetBias(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
 retreive bias as histogram
   name:  name of the histogram
   title: title of the histogram
   x0,x1: lower/upper edge of histogram.
          if (x0>=x1) then x0=0 and x1=nbin are used
TH1D * GetFoldedOutput(char *const name, char *const title, Double_t y0 = 0.0, Double_t y1 = 0.0) const
 retreive unfolding result folded back by the matrix
   name:  name of the histogram
   title: title of the histogram
   y0,y1: lower/upper edge of histogram.
          if (y0>=y1) then y0=0 and y1=nbin are used
TH1D * GetInput(char *const name, char *const title, Double_t y0 = 0.0, Double_t y1 = 0.0) const
 retreive input distribution
   name:  name of the histogram
   title: title of the histogram
   y0,y1: lower/upper edge of histogram.
          if (y0>=y1) then y0=0 and y1=nbin are used
TH2D * GetRhoIJ(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
 retreive full matrix of correlation coefficients
   name:  name of the histogram
   title: title of the histogram
   x0,x1: lower/upper edge of histogram.
          if (x0>=x1) then x0=0 and x1=nbin are used
TH2D * GetEmatrix(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
 retreive full error matrix
   name:  name of the histogram
   title: title of the histogram
   x0,x1: lower/upper edge of histogram.
          if (x0>=x1) then x0=0 and x1=nbin are used
TH1D * GetRhoI(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
 retreive matrix of global correlation coefficients
   name:  name of the histogram
   title: title of the histogram
   x0,x1: lower/upper edge of histogram.
          if (x0>=x1) then x0=0 and x1=nbin are used
TH2D * GetLsquared(char *const name, char *const title, Double_t x0 = 0.0, Double_t x1 = 0.0) const
 retreive ix of regularisation conditions squared
   name:  name of the histogram
   title: title of the histogram
   x0,x1: lower/upper edge of histogram.
            if (x0>=x1) then x0=0 and x1=nbin are used
Double_t const & GetTau(void)
 return regularisation parameter
Double_t const & GetRhoMax(void)
 return maximum global correlation
 Note: return value>1.0 means the unfolding has failed
Double_t const & GetRhoAvg(void)
 return average global correlation
Double_t const & GetChi2A(void)
 return chi**2 contribution from matrix A
Double_t const & GetChi2L(void)
 return chi**2 contribution from regularisation conditions
Double_t GetLcurveX(void)
 return value on x axis of L curve
Double_t GetLcurveY(void)
 return value on y axis of L curve
void GetOutput(TH1* output, Int_t *const binMap = 0) const
 get output distribution, cumulated over several bins
   output: output histogram
   binMap: for each bin of the original output distribution
           specify the destination bin. A value of -1 means that the bin
           is discarded. 0 means underflow bin, 1 first bin, ...
        binMap[0] : destination of underflow bin
        binMap[1] : destination of first bin

void GetEmatrix(TH2* ematrix, Int_t *const binMap = 0) const
 get output error matrix, cumulated over several bins
   ematrix: error matrix histogram
   binMap: for each bin of the original output distribution
           specify the destination bin. A value of -1 means that the bin
           is discarded. 0 means underflow bin, 1 first bin, ...
        binMap[0] : destination of underflow bin
        binMap[1] : destination of first bin

Double_t GetRhoI(TH1* rhoi, TH2* ematrixinv = 0, Int_t *const binMap = 0) const
 get global correlation coefficients and inverted error matrix,
 cumulated over several bins
   rhoi: global correlation histogram
   ematrixinv: inverse of error matrix (if pointer==0 it is not returned)
   binMap: for each bin of the original output distribution
           specify the destination bin. A value of -1 means that the bin
           is discarded. 0 means underflow bin, 1 first bin, ...
        binMap[0] : destination of underflow bin
        binMap[1] : destination of first bin

 return value: average global correlation
void GetRhoIJ(TH2* rhoij, Int_t *const binMap = 0) const
 get correlation coefficient matrix, cumulated over several bins
   rhoij:  correlation coefficient matrix histogram
   binMap: for each bin of the original output distribution
           specify the destination bin. A value of -1 means that the bin
           is discarded. 0 means underflow bin, 1 first bin, ...
        binMap[0] : destination of underflow bin
        binMap[1] : destination of first bin

TUnfold(const TUnfold& )
Int_t GetNx(void)
Int_t GetNy(void)

Author: Stefan Schmitt
Last change: Mon Nov 24 08:20:09 2008
Last generated: 2008-11-24 08:20

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.